Biomedical Microdevices

, Volume 12, Issue 6, pp 1009–1017 | Cite as

Versatile methods for the fabrication of polyvinylidene fluoride microstructures

  • Daniel Gallego-Perez
  • Nicholas J. Ferrell
  • Natalia Higuita-Castro
  • Derek J. Hansford
Article

Abstract

Polyvinylidene fluoride (PVDF) microstructures are of interest for a number of BioMEMS applications both for their piezoelectric and biocompatible properties. In this work, simple soft lithography-based techniques were developed to fabricate PVDF microstructures with diverse geometries, including microarrays of pillars, lines, and wells. Four different microstructure configurations were created: freestanding, stamped discontinuous, stamped continuous and imprinted patterns. Features with lateral dimensions down to 1 μm were consistently reproduced on 2.5 cm diameter areas. Atomic force microscopy (AFM) measurements of poled PVDF microstructures confirmed a marked inverse piezoelectric behavior. The techniques presented here have a number of advantages over previously demonstrated PVDF micropatterning approaches.

Keywords

Fluoropolymers Microfabrication Molding Piezoelectric Soft lithography 

Supplementary material

10544_2010_9455_MOESM1_ESM.docx (1.7 mb)
Supplementary Figure 1(a) Setup used for patterning/transferring PVDF microstructures using heat and pressure, (b) Close-up showing a patterned PVDF film being transferred from the PDMS mold onto a conductive substrate. (DOCX 1755 kb)
10544_2010_9455_MOESM2_ESM.docx (2.1 mb)
Supplementary Figure 2(a) PDMS stamp being peeled away from the patterned PVDF film, (b) PVA layer being lifted out of the PDMS mold (carrying the PVDF microstructures), (c) PVDF microstructures stamped on a rigid substrate (left), flexible substrate (middle), and on the PVA layer (right). Inset shows a SEM micrograph of a freestanding PVDF microstructure recovered by filtering the dissolved PVA layer. (DOCX 2135 kb)
10544_2010_9455_MOESM3_ESM.docx (2 mb)
Supplementary Figure 3(a) Poling and (b) actuation setups (inset in (a) shows a close-up of the sample with the connections made to the power supply). (DOCX 2056 kb)

References

  1. R. Bashir, Adv Drug Deliv Rev 56, 1565–1586 (2004)CrossRefGoogle Scholar
  2. E. Bormashenko, R. Pogreb, Y. Socol, M.H. Itzhaq, V. Streltsov, S. Sutovski, A. Sheshnev, Y. Bormashenko, Opt Mater 27, 429–434 (2004)CrossRefGoogle Scholar
  3. Q.X. Chen, P.A. Payne, Meas Sci Technol 6, 249–267 (1995)CrossRefGoogle Scholar
  4. W.J. Choi, Y. Jeon, J.H. Jeong, R. Sood, S.G. Kim, J Electroceram 17, 543–548 (2006)CrossRefGoogle Scholar
  5. Y.H. Chu, L.W. Martin, M.B. Holcomb, M. Gajek, S.J. Han, Q. He, N. Balke, C.H. Yang, D. Lee, W. Hu, Q. Zhan, P.L. Yang, A. Fraile-Rodriguez, A. Scholl, S.X. Wang, R. Ramesh, Nat Mater 7, 478–482 (2008)CrossRefGoogle Scholar
  6. G.V. Cochran, M.W. Johnson, M.P. Kadaba, F. Vosburgh, M.W. Ferguson-Pell, V.R. Palmieri, J Orthop Res 3, 508–513 (1985)CrossRefGoogle Scholar
  7. A. Dubach, R. Raghavan, J. Löffler, J.J. Michler, U. Ramamurty, Scr Mater 60, 567–570 (2009)CrossRefGoogle Scholar
  8. N. Ferrell, J. Woodard, D. Hansford, Biomed Microdevices 9, 815–821 (2007)CrossRefGoogle Scholar
  9. M.T. Frey, I.Y. Tsai, T.P. Russell, S.K. Hanks, Y.L. Wang, Biophys J 90, 3774–3782 (2006)CrossRefGoogle Scholar
  10. D. Gallego, N. Ferrell, Y. Sun, D.J. Hansford, Mater Sci Eng C Biomim Mater Sens Syst 28, 353–358 (2008)Google Scholar
  11. M. Ghibaudo, L. Trichet, J.L. Digabel, A. Richert, P. Hersen, B. Ladoux, Biophys J 97, 357–368 (2009)CrossRefGoogle Scholar
  12. M. Goel, Curr Sci 85, 443–453 (2003)Google Scholar
  13. M.L.K. Hoa, M. Lu, Y. Zhang, Adv Colloid Interface Sci 121, 9–23 (2006)CrossRefGoogle Scholar
  14. Z.J. Hu, G. Baralia, V. Bayot, J.F. Gohy, A.M. Jonas, Nano Lett 5, 1738–1743 (2005)CrossRefGoogle Scholar
  15. Z.J. Hu, M.W. Tian, B. Nysten, A.M. Jonas, Nat Mater 8, 62–67 (2009)CrossRefGoogle Scholar
  16. C.H. Hung, Y.L. Lin, T.H. Young, Biomaterials 27, 4461–4469 (2006)CrossRefGoogle Scholar
  17. J. Iqbal, M. Zaidi, Biochem Biophys Res Commun 328, 751–755 (2005)CrossRefGoogle Scholar
  18. D. Ivanov, BioDrugs 20, 351–356 (2006)CrossRefGoogle Scholar
  19. K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, W. Boda, Sens Actuators A Phys 12, 156–161 (2005)Google Scholar
  20. S.J. Kang, Y.J. Park, J. Hwang, H.J. Jeong, J.S. Lee, K.J. Kim, H.C. Kim, J. Huh, C. Park, Adv Mater 19, 581–586 (2007)CrossRefGoogle Scholar
  21. H. Kawai, Jpn J Appl Phys 8, 975–976 (1969)CrossRefGoogle Scholar
  22. A. Khademhosseini, R. Langer, J. Borestein, J.P. Vacanti, Proc Natl Acad Sci USA 103, 2480–2487 (2006)CrossRefGoogle Scholar
  23. D. Klee, Z. Ademovic, A. Bosserhoff, H. Hoecker, G. Maziolis, H.-J. Erli, Biomaterials 24, 3663–3670 (2003)CrossRefGoogle Scholar
  24. U. Klinge, B. Klosterhalfen, A.P. Ottinger, K. Junge, V. Schumpelick, Biomaterials 23, 3487–3493 (2002)CrossRefGoogle Scholar
  25. J.B. Lando, W.W. Doll, J Macromol Sci Phys B 2, 205–218 (1968)CrossRefGoogle Scholar
  26. S.B. Lang, S. Muensit, Appl Phys A 85, 125–134 (2006)CrossRefGoogle Scholar
  27. S. Lee, E.V. Bordatchev, M.J.F. Zeman, J Micromech Microeng 18, 045011 (2008)CrossRefGoogle Scholar
  28. D. Li, D.A. Bonnell, Annu Rev Mater Res 38, 351–368 (2008)CrossRefGoogle Scholar
  29. J.Y. Li, R.C. Rogan, E. Ustundag, K. Bhattacharya, Nat Mater 4, 776–781 (2005)CrossRefGoogle Scholar
  30. Y. Liu, D.N. Weiss, J. Li, ACS Nano 4, 83–90 (2010)CrossRefGoogle Scholar
  31. O. Loh, A. Vaziri, H.D. Espinosa, Exp Mech 49, 105–124 (2009)CrossRefGoogle Scholar
  32. N.B. Narayanan, A. Bonakdar, J. Dargahi, M. Packirisamy, R. Bhat, Smart Mater Struct 15, 1684–1690 (2006)CrossRefGoogle Scholar
  33. A. Navarro, S.A. Rocks, R.A. Dorey, J Electroceram 19, 321–326 (2007)CrossRefGoogle Scholar
  34. H. Ohigashi, J Appl Phys 47, 949–955 (1976)CrossRefGoogle Scholar
  35. S. Ozeri, D. Shmilovitz, J. Fainguelernt, Ind Electron 2006 IEEE Int Symp 4, 2840–2845 (2006)Google Scholar
  36. Y.J. Park, Y.S. Kang, C. Park, Eur Polym J 41(5), 1002–1012 (2005)CrossRefGoogle Scholar
  37. J.F. Scott, M. Dawber, A.Q. Jiang, F.D. Morrison, Ferroelectrics 286, 945–957 (2003)CrossRefGoogle Scholar
  38. D.B. Serrell, J. Law, A.J. Slifka, L. Mahajan, D.S. Finch, Biomed Microdevices 10, 883–889 (2008)CrossRefGoogle Scholar
  39. K.G. Sharp, G.S. Blackman, N.J. Glassmaker, A. Jagota, C. Hui, Langmuir 20, 6430–6438 (2004)CrossRefGoogle Scholar
  40. Y. Shen, U.C. Wejinya, N. Xi, C.A. Pomeroy, Proc IMechE 221, 99–112 (2007)CrossRefGoogle Scholar
  41. J.W. Sohn, S.B. Choi, D.Y. Lee, Proc IMechE 219, 429–436 (2005)CrossRefGoogle Scholar
  42. S.M. Spearing, Acta Mater 48, 179–196 (2000)CrossRefGoogle Scholar
  43. K. Tashiro, H. Tadokoro, M. Kobayashi, Ferroelectrics 32, 167–175 (1981)CrossRefGoogle Scholar
  44. E. Urban, M.W. King, R. Guidoin, G. Laroche, Y. Marois, L. Martin, A. Cardou, Y. Douville, ASAIO J 40, 145–156 (1994)Google Scholar
  45. A. Wada, H. Kubota, H. Hatanaka, H. Miura, Y. Iwamoto, J Hand Surg [Br] 26, 212–216 (2001)Google Scholar
  46. F. Wang, M. Tanaka, S. Chonan, J Intell Mater Syst Struct 14, 185–190 (2003)CrossRefGoogle Scholar
  47. Y. Xia, G.M. Whitesides, Annu Rev Mater Sci 28, 153–184 (1998)CrossRefGoogle Scholar
  48. B. Xu, F. Arias, G.M. Whitesides, Adv Mater 11, 492–495 (1999a)CrossRefGoogle Scholar
  49. B. Xu, F. Arias, S.T. Brittain, X.M. Zhao, B. Grzybowski, S. Torquato, G.M. Whitesides, Adv Mater 11, 1186–1189 (1999b)CrossRefGoogle Scholar
  50. J. Xu, M.J. Dapino, D. Gallego-Perez, D. Hansford, Sens Actuators A Phys 153, 24–32 (2009)CrossRefGoogle Scholar
  51. H. Zhang, D.W. Hutmacher, F. Chollet, A.N. Poo, E. Burdet, Macromol Biosci 5, 477–489 (2005)CrossRefGoogle Scholar
  52. L. Zhang, S. Ducharme, J. Li, Appl Phys Lett 91, 172906 (2007)CrossRefGoogle Scholar
  53. W. Zhou, Y. Huang, E. Menard, N.R. Aluru, J.A. Rogers, A.G. Alleyne, Appl Phys Lett 87, 251925 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Daniel Gallego-Perez
    • 1
  • Nicholas J. Ferrell
    • 1
  • Natalia Higuita-Castro
    • 1
  • Derek J. Hansford
    • 1
  1. 1.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations