Biomedical Microdevices

, Volume 12, Issue 6, pp 1001–1008 | Cite as

A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates

  • Maria Khoury
  • Avishay Bransky
  • Natanel Korin
  • Limor Chen Konak
  • Grigori Enikolopov
  • Itai Tzchori
  • Shulamit Levenberg
Article

Abstract

The unlimited proliferative and differentiative capacities of embryonic stem cells (ESCs) are tightly regulated by their microenvironment. Local concentrations of soluble factors, cell-cell interactions and extracellular matrix signaling are just a few variables that influence ESC fate. A common method employed to induce ESC differentiation involves the formation of cell aggregates called embryoid bodies (EBs), which recapitulate early stages of embryonic development. EBs are normally formed in suspension cultures, producing heterogeneously shaped and sized aggregates. The present study demonstrates the usage of a microfluidic traps system which supports prolonged EB culturing. The traps are uniquely designed to facilitate cell capture and aggregation while offering efficient gas/nutrients exchange. A finite element simulation is presented with emphasis on several aspects critical to appropriate design of such bioreactors for ESC culture. Finally, human ESC, mouse Nestin-GFP ESC and OCT4-EGFP ESCs were cultured using this technique and demonstrated extended viability for more than 5 days. In addition, EBs developed and maintained a polarized differentiation pattern, possibly as a result of the nutrient gradients imposed by the traps bioreactor. The novel microbioreactor presented here can enhance future embryogenesis research by offering tight control of culturing conditions.

Keywords

Microfluidics Micro-Bio reactor Embryonic stem cells Embryoid bodies 

References

  1. D.M. Adelman, M. Gertsenstein, A. Nagy, M.C. Simon, E. Maltepe, Genes Dev. 4(24), 3191–3203 (2000)CrossRefGoogle Scholar
  2. A. Bransky, N. Korin, S. Levenberg, Biomed. Microdevices 10(3), 421 (2008)CrossRefGoogle Scholar
  3. D.M. Cochran, D. Fukumura, M. Ancukiewicz, P. Carmeliet, R.K. Jain, Ann. Biomed. Eng. 34(8), 1247–58 (2006)CrossRefGoogle Scholar
  4. D. Di Carlo, L.Y. Wu, L.P. Lee, Lab Chip 6(11), 1445–49 (2006)CrossRefGoogle Scholar
  5. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442(7101), 403 (2006)CrossRefGoogle Scholar
  6. T. Ezashi, P. Das, R.M. Roberts, PNAS; 102(13), 4783–4788 (2005)CrossRefGoogle Scholar
  7. M. Gassmann, J. Fandrey, S. Bichet, M. Wartenberg, H.H. Marti, C. Bauer et al., PNAS 93(7), 2867–72 (1996)CrossRefGoogle Scholar
  8. A.S. Gleiberman, J.M. Encinas, J.L. Mignone, T. Michurina, M.G. Rosenfeld, G. Enikolopov, Dev. Dyn. 234(2), 413–21 (2005)CrossRefGoogle Scholar
  9. Y.S. Hwang, B.G. Chung, D. Ortmann, N. Hattori, H.C. Moeller, A. Khademhosseini, PNAS 106(40), 16978–83 (2009)CrossRefGoogle Scholar
  10. E.J. Itskovitz, M. Schuldiner, D. Karsenti, A. Eden, O. Yanuka, M. Amit et al., Mol. Med. 6(2), 88–95 (2000)Google Scholar
  11. M.H. Johnson, Annu Rev Cell Dev Biol (2009)Google Scholar
  12. J.M. Karp, J. Yeh, G. Eng, J. Fukuda, J. Blumling, K.Y. Suh et al., Lab Chip 7(6), 786–794 (2007)CrossRefGoogle Scholar
  13. G.M. Keller, Curr. Opin. Cell Biol. 7(6), 862 (1995)CrossRefGoogle Scholar
  14. N. Korin, A. Bransky, U. Dinnar, S. Levenberg, Lab Chip 7(5), 611–617 (2007)CrossRefGoogle Scholar
  15. N. Korin, A. Bransky, M. Khoury, U. Dinnar, S. Levenberg, Biotechnol. Bioeng. 102(4), 1222–30 (2009)CrossRefGoogle Scholar
  16. H.C. Moeller, M.K. Mian, S. Shrivastava, B.G. Chung, A. Khademhosseini, Biomaterials 29(6), 752–763 (2008)CrossRefGoogle Scholar
  17. J.C. Mohr, J.J. de Pablo, S.P. Palecek, Biomaterials 27(36), 6032 (2006)CrossRefGoogle Scholar
  18. S.J. Morrison, M. Csete, A.K. Groves, W. Melega, B. Wold, D.J. Anderson, J. Neurosci. 20(19), 7370–76 (2000)Google Scholar
  19. E.S. Ng, R.P. Davis, L. Azzola, E.G. Stanley, A.G. Elefanty, Blood 106(5), 1601–1603 (2005)CrossRefGoogle Scholar
  20. J.S. Odorico, D.S. Kaufman, J.A. Thomson, Stem Cells 19(3), 193–204 (2001)CrossRefGoogle Scholar
  21. J. Park, C.H. Cho, N. Parashurama, Y. Li, F. Berthiaume, M. Toner et al., Lab Chip 7(8), 1018–28 (2007)CrossRefGoogle Scholar
  22. M.J. Powers, K. Domansky, M.R. Kaazempur, A. Kalezi, A. Capitano, A. Upadhyaya et al., Biotechnol. Bioeng. 78(3), 257–269 (2002)CrossRefGoogle Scholar
  23. S. Provot, D. Zinyk, Y. Gunes, R. Kathri, Q. Le, H.M. Kronenberg, et al. J. Cell. Biol. 7;177(3), 451–64 (2007)Google Scholar
  24. R. Rajpurohit, C.J. Koch, Z. Tao, C.M. Teixeira, I.M. Shapiro, J. Cell. Physiol. 168(2), 424–432 (1996)CrossRefGoogle Scholar
  25. P. Roy, H. Baskaran, A.W. Tilles, M.L. Yarmush, M. Toner, Ann. Biomed. Eng. 29(11), 947–55 (2001)CrossRefGoogle Scholar
  26. D. Shweiki, A. Itin, D. Soffer, E. Keshet, Nature 359(6398), 845 (1992)CrossRefGoogle Scholar
  27. M.C. Simon, B. Keith, Nat. Rev. Mol. Cell Biol. 9(4), 285 (2008)CrossRefGoogle Scholar
  28. A.M. Skelley, O. Kirak, R. Jaenisch, J. Voldman, uTAS 581–583 (2007)Google Scholar
  29. D. Solter, J. Gearhart, Science 283(5407), 1468–70 (1999)CrossRefGoogle Scholar
  30. A. Spradling, B.D. Drummond, T. Kai, Nature 414(6859), 98 (2001)CrossRefGoogle Scholar
  31. J.A. Thomson, E.J. Itskovitz, S.S. Shapiro, M.A. Waknitz, J.J. Swiergiel, V.S. Marshall et al., Science 282(5391), 1145–47 (1998)CrossRefGoogle Scholar
  32. A. Tourovskaia, X. Figueroa-Masot, A. Folch, Lab Chip 5(1), 14–19 (2005)CrossRefGoogle Scholar
  33. M.D. Ungrin, C. Joshi, A. Nica, C. Bauwens, P.W. Zandstra, PLoS ONE 3(2), e1565 (2008)CrossRefGoogle Scholar
  34. L.G. Villa-Diaz, Y.S. Torisawa, T. Uchida, J. Ding, N.C. Nogueira-de-Souza, K.S. O'Shea, S. Takayama, G.D. Smith, Lab Chip 9(12), 1749–55 (2009)CrossRefGoogle Scholar
  35. F.M. Watt, B.L. Hogan, Science 287(5457), 1427–30 (2000)CrossRefGoogle Scholar
  36. L. Wu, D. Di Carlo, L. Lee, Biomed. Microdevices 10(2), 197 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Maria Khoury
    • 1
  • Avishay Bransky
    • 1
  • Natanel Korin
    • 1
  • Limor Chen Konak
    • 1
  • Grigori Enikolopov
    • 2
  • Itai Tzchori
    • 1
  • Shulamit Levenberg
    • 1
  1. 1.Biomedical EngineeringHaifaIsrael
  2. 2.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations