Biomedical Microdevices

, Volume 12, Issue 6, pp 987–1000 | Cite as

Microfluidic device to study arterial shear-mediated platelet-surface interactions in whole blood: reduced sample volumes and well-characterised protein surfaces

  • Nigel J. Kent
  • Lourdes Basabe-Desmonts
  • Gerardene Meade
  • Brian D. MacCraith
  • Brian G. Corcoran
  • Dermot Kenny
  • Antonio J. Ricco
Article

Abstract

We report a novel device to analyze cell-surface interactions under controlled fluid-shear conditions on well-characterised protein surfaces. Its performance is demonstrated by studying platelets interacting with immobilised von Willebrand Factor at arterial vascular shear rates using just 200 μL of whole human blood per assay. The device’s parallel-plate flow chamber, with 0.1 mm2 cross sectional area and height-to-width ratio of 1:40, provides uniform, well-defined shear rates along the chip surface with negligible vertical wall effects on the fluid flow profile while minimizing sample volumetric flow. A coating process was demonstrated by ellipsometry, atomic force microscopy, and fluorescent immunostaining to provide reproducible, homogeneous, uniform protein layers over the 0.7 cm2 cell-surface interaction area. Customized image processing quantifies dynamic cellular surface coverage vs. time throughout the whole-blood-flow assay for a given drug treatment or disease state. This device can track the dose response of anti-platelet drugs, is suitable for point-of-care diagnostics, and is designed for adaptation to mass manufacture.

Keywords

Shear activation Microfluidics Platelet-surface interactions Protein characterisation Image analysis 

Supplementary material

10544_2010_9453_MOESM1_ESM.tif (12.5 mb)
High Resolution Image (TIFF 12797 kb)

References

  1. C.H. Ahn, J.W. Choi, G. Beaucage, J.H. Nevin, J.B. Lee, A. Puntambekar, J.Y. Lee, Disposable Smart lab on a chip for point-of- care clinical diagnostics. Proc IEEE 92, 154–173 (2004)CrossRefGoogle Scholar
  2. K. Almalah, J. McGuire, R. Sproull, A Macroscopic Model for the Single-Component Protein Adsorption-Isotherm. J Colloid Interface Sci 170, 261–268 (1995)CrossRefGoogle Scholar
  3. H. Becker, L.E. Locascio, Polymer microfluidic devices. Talanta 56, 267–287 (2002)CrossRefGoogle Scholar
  4. T. Boone, Z.H. Fan, H. Hooper, A.J. Ricco, H.D. Tan, S. Williams, Plastic advances microfluidic devices. Anal Chem 74, 78A–86A (2002)CrossRefGoogle Scholar
  5. D.C. Brown, R.S. Larson, Improvements to parallel plate flow chambers to reduce reagent and cellular requirements. BMC Immunol 2, 1–7 (2001)CrossRefGoogle Scholar
  6. H. Bruus, Theoretical Microfluidics (Oxford University Press, Oxford, 2007)Google Scholar
  7. W.C. Chang, L.P. Lee, D. Liepmann, Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip 5, 64–73 (2005)CrossRefGoogle Scholar
  8. R. Daw, J. Finkelstein, Lab on a chip. Nature 442, 367–367 (2006)CrossRefGoogle Scholar
  9. P.G. De Groot, J. Sixma Jan, Perfusion Chambers, Chapter 32, in Platelets, ed. by A.D. Michelson, 2nd edn. (Elsevier/Academic Press, San Diego, 2007), pp. 575–585Google Scholar
  10. J. El-Ali, P.K. Sorger, K.F. Jensen, Cells on chips. Nature 442, 403–411 (2006)CrossRefGoogle Scholar
  11. H. Elwing, Protein absorption and ellipsometry in biomaterial research. Biomaterials 19, 397–406 (1998)CrossRefGoogle Scholar
  12. C. Fillafer, G. Ratzinger, J. Neumann, Z. Guttenberg, S. Dissauer, I. Lichtscheidl, M. Wirth, F. Gabor, M. Schneider, An acoustically driven biochip—impact of flow on the cell-association of targeted drug carriers. Lab Chip 9(19), 2782–2788 (2009)CrossRefGoogle Scholar
  13. J. Garcia-Cordero, A.J. Ricco, Lab on a Chip (General Philosophy) in Encyclopedia of Micro- and Nanofluidics, 962–969 (Springer, Berlin, 2008)Google Scholar
  14. E. Gutierrez, B. Petrich, S. Shattil, M. Ginsberg, A. Groisman, A. Kasirer-Friede, Microfluidic devices for studies of shear dependent platelet adhesion. Lab Chip 8, 1486–1495 (2008)CrossRefGoogle Scholar
  15. P. Harrison, Platelet function analysis. Blood Rev 19, 111–123 (2005)CrossRefGoogle Scholar
  16. P. Harrison, Assessment of platelet function in the laboratory. Hamostaseologie 29, 25–31 (2009)Google Scholar
  17. A.S. Kantak, B.K. Gale, Y. Lvov, S.A. Jones, Platelet function analyzer: Shear activation of platelets in microchannels. Biomed Microdevices 5, 207–215 (2003)CrossRefGoogle Scholar
  18. M.H. Kroll, J.D. Hellums, L.V. McIntire, A.I. Schafer, J.L. Moake, Platelets and shear stress. Blood 88, 1525–1541 (1996)Google Scholar
  19. B. Lincoln, A.J. Ricco, N.J. Kent, L. Basabe-Desmonts, L.P. Lee, B.D. MacCraith, D. Kenny, G. Meade, Integrated system for the study of fluid shear-mediated platelet interactions with Von Willebrand Factor protein surfaces using microliter volumes of whole blood. doi:10.1016/j.ab.2010.05.030
  20. H. Lu, L.Y. Koo, W.C.M. Wang, D.A. Lauffenburger, L.G. Griffith, K.F. Jensen, Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem 76, 5257–5264 (2004)CrossRefGoogle Scholar
  21. A.D. Michelson, Platelets 2nd Ed (Academic Press, USA, 2006), pp. 145–158Google Scholar
  22. N.A. Mody, O. Lomakin, T.A. Doggett, T.G. Diacovo, M.R. King, Mechanics of transient platelet adhesion to von Willebrand factor under flow. Biophys J 88, 1432–1443 (2005)CrossRefGoogle Scholar
  23. K. Nakanishi, T. Sakiyama, K. Imamura, On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91, 233–244 (2001)CrossRefGoogle Scholar
  24. NI Vision Concepts Manual. Ed. Corporation, N.I. (2000–2005). http://www.ni.com/pdf/manuals/372916e.pdf
  25. N. Saeidi, E. Sander, J. Ruberti, Dynamic shear-influenced collagen self-assembly. Biomaterials 30(34), 6581–6592 (2009)CrossRefGoogle Scholar
  26. U. Schaff, M. Xing, K. Lin, N. Pan, N. Jeon, S. Simon, Vascular mimetics based on microfluidics for imaging the leukocyte— endothelial inflammatory response. Lab Chip 7(4), 448–456 (2007)CrossRefGoogle Scholar
  27. B. Schmidt, P. Huang, K. Breuer, M. Lawrence, Catch strip assay for the relative assessment of two-dimensional protein association kinetics. Anal Chem 80(4), 944–950 (2008)CrossRefGoogle Scholar
  28. H. Slayter, J. Loscalzo, P. Bockenstedt, R.I. Handin, Native Conformation of Human Vonwillebrand Protein— Analysis by Electron-Microscopy and Quasi-Elastic Light-Scattering. J Biol Chem 260, 8559–8563 (1985)Google Scholar
  29. S.H. Tam, P.M. Sassoli, R.E. Jordan, M.T. Nakada, Abciximab (ReoPro, chimeric 7E3 Fab) demonstrates equivalent affinity and functional blockade of glycoprotein IIb/IIIa and alpha(v)beta(3) integrins. Circulation 98, 1085–1091 (1998)Google Scholar
  30. P. Tengvall, I. Lundstrom, B. Liedberg, Protein adsorption studies on model organic surfaces: an ellipsometric and infrared spectroscopic approach. Biomaterials 19, 407–422 (1998a)CrossRefGoogle Scholar
  31. P. Tengvall, A. Askendal, I. Lundstrom, Studies on protein adsorption and activation of complement on hydrated aluminium surfaces in vitro. Biomaterials 19, 935–940 (1998b)CrossRefGoogle Scholar
  32. W. Thomas, Catch bonds in adhesion. Annu Rev Biomed Eng 10, 39–57 (2008)CrossRefGoogle Scholar
  33. A. Toscano, M.M. Santore, Fibrinogen adsorption on three silica-based surfaces: Conformation and kinetics. Langmuir 22, 2588–2597 (2006)CrossRefGoogle Scholar
  34. G.M. Whitesides, E. Ostuni, S. Takayama, X.Y. Jiang, D.E. Ingber, Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3, 335–373 (2001)CrossRefGoogle Scholar
  35. P. Yager, G.J. Domingo, J. Gerdes, Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10, 107–144 (2008)CrossRefGoogle Scholar
  36. J.J. Zwaginga, G. Nash, M.R. King, J.W. Heemskerk, M. Frojmovic, M.F. Hoylaerts, K.S. Sakariassen, Flow-based assays for global assessment of hemostasis. Part 1: Biorheologic considerations. J Thromb Haemost 4, 2486–7 (2006a)CrossRefGoogle Scholar
  37. J.J. Zwaginga, K.S. Sakariassen, G. Nash, M.R. King, J.W. Heemskerk, M. Frojmovic, M.F. Hoylaerts, Flow-based assays for global assessment of hemostasis. Part 2: current methods and considerations for the future. J Thromb Haemost 4, 2716–7 (2006b)CrossRefGoogle Scholar
  38. J.J. Zwaginga, K.S. Sakarjassen, M.R. King, T.G. Diacovo, E.F. Grabowski, G. Nash, M. Hoylaerts, J.W. Heemskerk, Can blood flow assays help to identify clinically relevant differences in von Willebrand factor functionality in von Willebrand disease types 1–3? J Thromb Haemost 5, 2547–2549 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nigel J. Kent
    • 1
    • 4
  • Lourdes Basabe-Desmonts
    • 1
  • Gerardene Meade
    • 2
  • Brian D. MacCraith
    • 1
  • Brian G. Corcoran
    • 3
  • Dermot Kenny
    • 2
  • Antonio J. Ricco
    • 1
  1. 1.Biomedical Diagnostics InstituteDublin City UniversityGlasnevinIreland
  2. 2.Biomedical Diagnostics Institute, Dept of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublin 2Ireland
  3. 3.School of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevinIreland
  4. 4.The Biomedical Devices and Assistive Technology Research Group, College of Engineering and Built Environment, Dublin Institute of TechnologyDublin 1Ireland

Personalised recommendations