Biomedical Microdevices

, Volume 12, Issue 6, pp 977–985 | Cite as

High-fidelity patch-clamp recordings from neurons cultured on a polymer microchip

  • Dolores Martinez
  • Christophe Py
  • Mike W. Denhoff
  • Marzia Martina
  • Robert Monette
  • Tanya Comas
  • Collin Luk
  • Naweed Syed
  • Geoff Mealing
Article

Abstract

We present a polymer microchip capable of monitoring neuronal activity with a fidelity never before obtained on a planar patch-clamp device. Cardio-respiratory neurons Left Pedal Dorsal 1 (LPeD1) from mollusc Lymnaea were cultured on the microchip’s polyimide surface for 2 to 4 hours. Cultured neurons formed high resistance seals (gigaseals) between the cell membrane and the surface surrounding apertures etched in the polyimide. Gigaseal formation was observed without applying external force, such as suction, on neurons. The formation of gigaseals, as well as the low access resistance and shunt capacitance values of the polymer microchip resulted in high-fidelity recordings. On-chip culture of neurons permitted, for the first time on a polymeric patch-clamp device, the recording of high fidelity physiological action potentials. Microfabrication of the hybrid poly(dimethylsiloxane)—polyimide (PDMS-PI) microchip is discussed, including a two-layer PDMS processing technique resulting in minimized shrinking variations.

Keywords

Planar patch-clamp Microfluidic Neurons Poly(dimethylsiloxane) Polyimide Action potential 

Abbreviations

PDMS

poly(dimethylsiloxane)

PI

polyimide

LPeD1

Left Pedal Dorsal 1

R-C

access resistance – shunt capacitance

SEM

scanning electron microscope

AFM

atomic force microscope

References

  1. Axon Instruments, in The axon guide: a guide to electrophysiology and biophysics laboratory techniques (1993), p. 262.Google Scholar
  2. A. Bruggemann, M. George, M. Klau, M. Beckler, J. Steindl, J.C. Behrends, N. Fertig, Assay Drug Dev. Technol. 1, 665 (2003)CrossRefGoogle Scholar
  3. T. Brismar, W.F. Gilly, Proc. Natl Acad. Sci. 84, 1459 (1987)CrossRefGoogle Scholar
  4. C.-H. Chen, A. Folch, Lab Chip 6, 1338 (2006)CrossRefGoogle Scholar
  5. C.-Y. Chen, T.-Y. Tu, C.-H. Chen, D.-S. Jong, A.M. Wo, Lab Chip 9, 2370 (2009)CrossRefGoogle Scholar
  6. E. Dahan, V. Bize, T. Lehnert, J.D. Horisberger, M.A.M. Gijs, Lab Chip 8, 1809 (2008)CrossRefGoogle Scholar
  7. M.W. Denhoff, J. Phys. D Appl. Phys. 39, 1761 (2006)CrossRefGoogle Scholar
  8. A.E. Dubin, N. Nasser, J. Rohrbacher, A.N. Hermans, R. Marrannes, C. Grantham, K. Van Rossem, M. Cik, S.R. Chaplan, D. Gallacher, J. Xu, A. Guia, N.G. Byrne, C. Mathes, J. Biomol. Screen. 10, 168 (2005)CrossRefGoogle Scholar
  9. J. Dunlop, M. Bowlby, R. Peri, D. Vasilyev, R. Arias, Nat. Rev. Drug Discov. 7, 358 (2008)CrossRefGoogle Scholar
  10. N. Fertig, R.H. Blick, J.C. Behrends, Biophys. J. 82, 3056 (2002)CrossRefGoogle Scholar
  11. N. Fertig, A. Tilke, R.H. Blick, J.P. Kotthaus, J.C. Behrends, G. ten Bruggencate, Appl. Phys. Lett. 77, 1218 (2000)CrossRefGoogle Scholar
  12. W.F. Gilly, R. Gillette, M. McFarlane, J. Neurophysiol. 77, 2373 (1997)Google Scholar
  13. O.P. Hamill, A. Marty, E. Neher, B. Sakmann, F.J. Sigworth, Pflügers Arch. 391, 85 (1981)CrossRefGoogle Scholar
  14. S. Hediger, A. Sayah, M.A.M. Gijs, Sens. Actuators B 56, 175 (1999)CrossRefGoogle Scholar
  15. B. Hille, Ionic Channels of Excitable Membranes (Sinauer Associates, Sunderland, 1984)Google Scholar
  16. C. Ionescu-Zanetti, R.M. Shaw, J. Seo, Y.-N. Jan, L.Y. Jan, L.P. Lee, Proc. Natl Acad. Sci. 102, 9112 (2005)CrossRefGoogle Scholar
  17. L. Kiss, P.B. Bennett, V.N. Uebele, K.S. Koblan, S.A. Kane, B. Neagle, K. Schroeder, Assay Drug Dev. Technol. 1, 127 (2003)CrossRefGoogle Scholar
  18. K.G. Klemic, J.F. Klemic, F.J. Sigworth, Pflügers Arch. 449, 564 (2005)CrossRefGoogle Scholar
  19. P.G. Kostyuk, O.A. Krishtal, J. Physiol. 270, 569 (1977)Google Scholar
  20. J. Kutchinsky, S. Friis, M. Asmild, R. Taboryski, S. Pedersen, R.K. Vestergaard, R.B. Jacobsen, K. Krzywkowski, R.L. Schroder, T. Ljungstrom, N. Helix, C.B. Sorensen, M. Bech, N.J. Willumsen, Assay Drug Dev. Technol. 1, 685 (2003)CrossRefGoogle Scholar
  21. A.Y. Lau, P.J. Hung, A.R. Wu, L.P. Lee, Lab Chip 6, 1510 (2006)CrossRefGoogle Scholar
  22. S.S. Lee, S.W. Lee, Microsyst. Technol. 14, 205 (2008)CrossRefGoogle Scholar
  23. T. Lehnert, M.A.M. Gijs, R. Netzer, U. Bischoff, Appl. Phys. Lett. 81, 5063 (2002)CrossRefGoogle Scholar
  24. T. Lehnert, D.M.T. Nguyen, L. Baldi, M.A.M. Gijs, Microfluid. Nanofluid. 3, 109 (2007)CrossRefGoogle Scholar
  25. H.D. Lux, A.M. Brown, J. Gen. Physiol. 83, 727 (1984)CrossRefGoogle Scholar
  26. P.K. McCamphill, T.W. Dunn, N.I. Syed, Eur. J. Neurosci. 27, 2033 (2008)CrossRefGoogle Scholar
  27. G. Mealing, M. Bani-Yaghoub, C. Py, R. Voicu, R. Barjovanu, R. Tremblay, R. Monette, J. Mielke, K. Faid, in Proceedings of the International Joint Conference on Neural Networks (2005), pp. 3116–3120Google Scholar
  28. D.W. Munno, D.J. Prince, N.I. Syed, J. Neurosci. 23, 4146 (2003)Google Scholar
  29. W.-L. Ong, K.-C. Tang, A. Agarwal, R. Nagarajan, L.-W. Luo, L. Yobas, Lab Chip 7, 1357 (2007)CrossRefGoogle Scholar
  30. R. Pantoja, J. Nagarah, D. Starace, N.A. Melosh, R. Blunck, F. Bezanilla, J.R. Heath, Biosens. Bioelectron. 20, 509 (2004)CrossRefGoogle Scholar
  31. A. Priel, Z. Gil, V.T. Moy, K.L. Magleby, S.D. Silberberg, Biophys. J. 92, 3893 (2007)CrossRefGoogle Scholar
  32. C. Py, G. Mealing, M. Denhoff, A. Charrier, R. Monette, T. Comas, T. Ahuja, D. Martinez, A. Krantis, S. Wingar, in Proceedings of the 12th Micro-Total Analysis Systems Conference (2008), pp. 507–509Google Scholar
  33. C. Schmidt, M. Mayer, H. Vogel, Angew. Chem. Int. Ed. 39, 3137 (2000)Google Scholar
  34. K. Schroeder, B. Neagle, D.J. Trezise, J. Worley, J. Biomol. Screen. 8, 50 (2003)CrossRefGoogle Scholar
  35. W.J. Sigurdson, C.E. Morris, J. Neurosci. 8, 2801 (1989)Google Scholar
  36. F.J. Sigworth, K.G. Klemic, IEEE Trans. Nanobiosci. 4, 121 (2005)CrossRefGoogle Scholar
  37. A.B. Smit, N.I. Syed, D. Schaap, J. van Minnen, J. Klumperman, K.S. Kits, H. Lodder, R.C. van der Schors, R. van Elk, B. Sorgedrager, K. Brejc, T.K. Sixma, W.P.M. Geraerts, Nature 411, 261 (2001)CrossRefGoogle Scholar
  38. T. Sordel, S. Garnier-Raveaud, F. Sauter, C. Pudda, F. Marcel, M. De-Waard, C. Arnoult, M. Vivaudou, F. Chatelin, N. Picollet-D’hahan, J. Biotechnol. 125, 145 (2006)CrossRefGoogle Scholar
  39. A. Stett, C. Burkhardt, U. Weber, P. van Stiphout, T. Knott, Recept. Channels 9, 59 (2003a)CrossRefGoogle Scholar
  40. A. Stett, V. Bucher, C. Burkhardt, U. Weber, W. Nisch, Med. Biol. Eng. Comput. 41, 233 (2003b)CrossRefGoogle Scholar
  41. N.I. Syed, A.G.M. Bulloch, K. Lukowiak, Science 250, 282 (1990)CrossRefGoogle Scholar
  42. N.J. Willumsen, M. Bech, S.P. Olesen, B.S. Jensen, M.P.G. Korsgaard, P. Christophersen, Recept. Channels 9, 3 (2003)CrossRefGoogle Scholar
  43. M.A. Woodin, D.W. Munno, N.I. Syed, J. Neurosci. 22, 505 (2002)Google Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2010

Authors and Affiliations

  • Dolores Martinez
    • 1
  • Christophe Py
    • 1
  • Mike W. Denhoff
    • 1
  • Marzia Martina
    • 2
  • Robert Monette
    • 2
  • Tanya Comas
    • 2
  • Collin Luk
    • 3
  • Naweed Syed
    • 3
  • Geoff Mealing
    • 2
  1. 1.Institute for Microstructural SciencesNational Research Council of CanadaOttawaCanada
  2. 2.Institute for Biological SciencesNational Research Council of CanadaOttawaCanada
  3. 3.Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada

Personalised recommendations