Biomedical Microdevices

, Volume 12, Issue 6, pp 967–975 | Cite as

Handheld impedance biosensor system using engineered proteinaceous receptors

  • Ebrahim Ghafar-Zadeh
  • Shafinaz F. Chowdhury
  • Amir Aliakbar
  • Vamsy Chodavarapu
  • Rosemond Lambrose
  • Lenord Beital
  • Mohamad Sawan
  • Mark Trifiro
Article

Abstract

We put forward an impedometric protein-based biosensor platform suitable for point-of-care diagnostics. A hand-held scale impedance reader system is described for the detection of corresponding physiochemical changes as the immobilized proteins bind to the analyte molecules in the proximity of the microfabricated electrodes. Specifically, we study the viability of this approach for glucose biosensing purposes using genetically engineered glucokinase as receptor proteins. The proposed reagent-less biosensor offers a high sensitivity of 0.5 mM glucose concentration level in the physiologically relevant range of 0.5 mM to 7.5 mM with less than 10 s response time.

Keywords

Protein-based biosensor Impedometric readout system Microfabricated gold electrodes Glucokinase Glucose 

References

  1. K. Aoki, H. Suzuki, Y. Ishimaru, S. Toyama, Y. Ikariyama, T. Iida, Thermophilic glucokinase-based sensors for the detection of various saccharides and glycosides. Sens. Actuators, B 108(1), 727–732 (2005)CrossRefGoogle Scholar
  2. I. Bontidean, C. Berggren, G. Johansson, E. Csoregi, B. Mattiasson, J.R. Lloyd, K.J. Jakeman, N.L. Brown, Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Anal. Chem. 27(2), 355–384 (1998)Google Scholar
  3. C.E.D. Chidsey, C.R. Bertozzi, T.M. Putvinski, A.M. Mujsce, Co-adsorption of ferrocene-terminated and unsubstituted alkanethiols on gold: electroactive self assembled monolayers. J. Am. Chem. Soc. 112(11), 4301–4306 (1990)CrossRefGoogle Scholar
  4. S. Cho, S. Becker, H. von Briesen, H. Thielecke, Impedance monitoring of herpes simplex virus-induced cytopathic effect in Vero cells. Sens. Actuators, B 123(2), 978–982 (2007)CrossRefGoogle Scholar
  5. S. D’Auria, N. DiCesare, M. Staiano, Z. Gryczynski, M. Rossi, J.R. Lakowicz, A novel fluorescence competitive assay for glucose determinations by using a thermostable glucokinase from the Thermophilic Microorganism Bacillus stearothermophilus. Anal. Biochem. 303(2), 138–144 (2002)CrossRefGoogle Scholar
  6. Data sheet, Analog Device, Evaluation Board for the 1 MSPS 12-Bit Impedance Converter Network Analyzer, 2009, http://www.analog.com/static/importedfiles/eval_boards
  7. J.H. Fendler, Chemical self-assembly for electronic applications. Chem Mater 13(2), 3196–3210 (2001)CrossRefGoogle Scholar
  8. E. Ghafar-Zadeh, M. Sawan, M. Hajj-Hassan, M.A. Miled, A CMOS based microfluidic detector: Design, calibration and experimental results. 50th Midwest Symposium on Circuits and Systems, (MWSCAS), Aug 2007Google Scholar
  9. E. Ghafar-Zadeh, M. Sawan, D. Therriault, A microfluidic packaging technique for lab-on-chip applications. IEEE Trans. Adv. Packag. 32(2), 4110–4416 (2009)CrossRefGoogle Scholar
  10. C.T. Hsu, H.H. Chung, D.M. Tsai, M.Y. Fang, H.C. Hsiao, J.M. Zen, Fabrication of a glucose biosensor based on inserted barrel plating gold electrodes. Anal. Chem. 81(1), 515–518 (2009)CrossRefGoogle Scholar
  11. K. Kamta, M. Mitsuya, T. Nishimura, J. Eiki, Y. Nagata, Structural basis of allosteric regulation of the monimeric allosteric enzyme human glucokinase. Structure 12(13), 429–438 (2004)CrossRefGoogle Scholar
  12. M. Kao, The study of impedance spectroscopy for single cell analysis. Mater’s Thesis, Department of Electrical Engineering, National Cheng Kung University, 2006, http://etdncku.lib.ncku.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0820107-143736
  13. D.S. Kim, Y.T. Jeong, H.J. Park, J.K. Shin, P. Choi, J.H. Lee, G. Lim, An FET-type charge sensor for highly sensitive detection of DNA sequence. Biosens. Bioelectron. 20(1), 69–74 (2004)CrossRefGoogle Scholar
  14. G.B.B. Kristensen, K. Nerhus, G. Thue, S. Sandberg, Standardized evaluation of instruments for self-monitoring of blood glucose by patients and a technologist. Clin. Chem. 50(6), 1068–1071 (2004)CrossRefGoogle Scholar
  15. A. Li, F. Yang, Y. Ma, X. Yang, Electrochemical impedance detection of DNA hybridization based on dendrimer modified electrode. Biosens. Bioelectron. 22(8), 1716–1722 (2007)CrossRefGoogle Scholar
  16. R. Lumbroso, N. Naas, L.K. Beitel, M.F. Lawrence, M.A. Trifiro, Novel bioimpedance sensor for glucose recognition. IEEE Conference on Signals, Systems and Electronics (ISSE’07), (Montreal, 2007)Google Scholar
  17. C.A. Marquette, M.F. Lawrence, L.J. Blum, DNA covalent immobilization onto screen-printed electrode networks for direct label-free. Anal. Chem. 78(3), 954–964 (2006)CrossRefGoogle Scholar
  18. J. Molnes, L. Bjorkhaug, O. Sovik, P.R. Njolstad, T. Flatmark, Catalytic activation of human glucokinase by substrate binding-residue contact involved in the binding of D-glucose to the super-open form and conformational transitions. FEBS J. 275(10), 2467–2481 (2008)CrossRefGoogle Scholar
  19. H.J. Park, S.K. Kim, K. Park, H.K. Lyu, C.S. Lee, S.J. Chung, W.S. Yun, M. Kim, B.H. Chung, An ISFET biosensor for the monitoring of maltose-induced conformational changes in MBP. FEBS Lett. 583(1), 157–162 (2009)CrossRefGoogle Scholar
  20. A. Rub, A. Rahman, G. Justin, A. Guiseppi-Elie, Towards an implantable biochip for glucose and lactate monitoring using microdisc electrode arrays (MDEAs). Biomed. Microdevices 11(1), 75–85 (2009)CrossRefGoogle Scholar
  21. A. Salimi, E. Sharifi, A. Noorbakhsh, S. Soltanian, Immobilization of glucose oxidase on electrodeposited nickel oxide nanoparticles: Direct electron transfer and electrocatalytic activity. Biosens. Bioelectron. 22(12), 3146–3153 (2007)CrossRefGoogle Scholar
  22. P. Seunghee, Y. Chung-Bang, D.J. Inman, A self-contained active sensor system for health monitoring of civil infrastructures. IEEE Conferences on Sensors (2005)Google Scholar
  23. A. Shabani, M. Zourob, B. Allain, C.A. Marquette, M. Lawrence, R. Mandeville, Bacteriophage-modified microarrays for the direct impedimetric detection of bacteria. Anal. Chem. 80(24), 9475–9482 (2008)CrossRefGoogle Scholar
  24. J.T. Sherman, M.R. DiSilvestro, M.A. Kryger, Method and apparatus for predicting the operating points of bone cement. US patent, 0154874 A1, (2005)Google Scholar
  25. M. Staiano, P. Bazzicalupo, M. Rossi, S. D’Auria, Glucose biosensors as models for the development of advanced protein-based biosensors. Mol. Biosyst. 1, 354–362 (2005)CrossRefGoogle Scholar
  26. F. Tao, S.L. Bernasek, Understanding odd–even effects in organic self-assembled monolayers. Chem. Rev. 107(5), 1408–1453 (2007)CrossRefGoogle Scholar
  27. A. Trifiro, Glucose sensor and uses thereof. US patent, 0232370 A1, (2003)Google Scholar
  28. A. Ulman, Formation and structure of self-assembled monolayers. Chem. Rev. 96(4), 1533–1554 (1996)CrossRefGoogle Scholar
  29. L. Yi Jae Dae, P. Joon, P. Jae Yeong, Fully packaged nonenzymatic glucose microsensors with nanoporous platinum electrodes for anti-fouling. IEEE Sens. J. 8(11), 1922–1927 (2008)CrossRefGoogle Scholar
  30. L.G. Zhou, A.E.G. Cass, Periplasmic binding protein based biosensors. 1. Preliminary study of maltose binding protein as sensing element for maltose biosensor. Biosens. Bioelectron. 6(5), 445–450 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ebrahim Ghafar-Zadeh
    • 1
  • Shafinaz F. Chowdhury
    • 2
  • Amir Aliakbar
    • 1
  • Vamsy Chodavarapu
    • 1
  • Rosemond Lambrose
    • 2
  • Lenord Beital
    • 2
  • Mohamad Sawan
    • 3
  • Mark Trifiro
    • 2
  1. 1.Department of Electrical and Computer EngineeringMcGill UniversityMontrealCanada
  2. 2.Lady Davis Institute for Medical ResearchMcGill UniversityMontrealCanada
  3. 3.Department of Electrical EngineeringEcole Polytechnique de MontrealMontrealCanada

Personalised recommendations