Biomedical Microdevices

, Volume 12, Issue 5, pp 949–957 | Cite as

An on-chip whole blood/plasma separator with bead-packed microchannel on COC polymer

  • Joon S. Shim
  • Andrew W. Browne
  • Chong H. AhnEmail author


A disposable on-chip whole blood/plasma separator, which is able to separate plasma from whole human blood by capillary force through a bead-packed microchannel, has been designed, fabricated and characterized in this work. Various sizes of silica beads were slurry-packed through a microchannel using a bump structure which held beads in a defined region. The bead-packed microchannel induces a capillary force which allows plasma to move forward through the bead-packed column more rapidly than red blood cells (RBCs). The blood/plasma separator with bead-packed microchannel has successfully separated plasma from the whole blood without haemolysis of RBCs. The separation method developed in this work can be applied to various on-chip stationary filtrations of RBC for point-of-care clinical diagnostics.


Bead-packed microchannel Blood/plasma separator On-chip filtration Lab on a chip Slurry-packed microcolumn 



The authors would like to acknowledge Mr. Matthew Sperling in University of Cincinnati Department of Emergency Medicine for procuring human blood samples.


  1. C.H. Ahn, J. Choi, G. Beaucage, J.H. Nevin, J. Lee, A. Puntambeker, J.Y. Lee, Proceedings of the IEEE, Special Issue on Biomedical Applications for MEMS and Microfluidics, 92, 154–173 (2004).Google Scholar
  2. Y. Cho, J. Lee, J. Park, B. Lee, Y. Lee, C. Ko, Lab Chip 7, 565 (2007)CrossRefGoogle Scholar
  3. T.J. Collins, BioTechniques 43, S25–S30 (2007)CrossRefGoogle Scholar
  4. T.A. Crowley, V. Pizziconi, Lab Chip 5, 922 (2005)CrossRefGoogle Scholar
  5. E. Gering, C.T. Atkinson, J. Parasitol. 90(4), 881–882 (2004)CrossRefGoogle Scholar
  6. L. Gervais, E. Delamarche, Lab Chip 9, 3330 (2009)CrossRefGoogle Scholar
  7. M. Grumann, J. Steigert, L. Riegger, I. Moser, B. Enderle, K. Riebeseel, G. Urban, R. Zengerle, J. Ducrée, Biomed. Microdevices 8, 209 (2006)CrossRefGoogle Scholar
  8. S. Haeberle, T. Brenner, R. Zengerle, J. Ducrée, Lab Chip 6, 776 (2006)CrossRefGoogle Scholar
  9. K. Han, A.B. Frazier, Lab Chip 6, 265 (2006)CrossRefGoogle Scholar
  10. J. Han, S. Lee, Y. Heo, C. Hwang, C.H. Ahn, Proceedings of 13th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers’05), 1688 (2005).Google Scholar
  11. A.W.L. Jay, Biophys. J. 13, 1166 (1973)CrossRefGoogle Scholar
  12. G. Khanarian, H. Celanese, Optic. Eng. 40(6), 1024 (2001)CrossRefGoogle Scholar
  13. L. Lin, J.T. Guthrie, J. Membr. Sci. 173, 73 (2000)CrossRefGoogle Scholar
  14. A. Manz, H. Becker, Microsystem Technology in Chemistry and Life Science (Springer, Heidelberg, 1998)CrossRefGoogle Scholar
  15. H. Mohamed, L.D. McCurdy, D.H. Szarowski, S. Duva, J.N. Turner, M. Caggana, IEEE Trans. Nanobiosci. 3(4), 251–257 (2004)CrossRefGoogle Scholar
  16. E. Oosterbroek, A.v.d. Berg. Lab-on-a-Chip: Miniaturized Systems for (Bio)Chemical Analysis and Synthesis, 2nd edn (Elsevier Science, 2003).Google Scholar
  17. M.A. Peterson, Phys. Rev. A 45(6), 4116–4131 (1992)CrossRefGoogle Scholar
  18. A. Piruska, I. Nikcevic, S. Lee, C.H. Ahn, W.R. Heineman, P.A. Limbach, C.J. Seliskar, Lab Chip 5, 1348–1354 (2005)CrossRefGoogle Scholar
  19. S. Thorslund, O. Klett, F. Nikolajeff, K. Markides, J. Bergquist, Biomed. Microdevices 2006(8), 73 (2006)CrossRefGoogle Scholar
  20. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 412 (2006)CrossRefGoogle Scholar
  21. S. Yang, A. Ündar, J.D. Zahn, Lab Chip 6, 871 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Joon S. Shim
    • 1
  • Andrew W. Browne
    • 1
  • Chong H. Ahn
    • 1
    Email author
  1. 1.Microsystems and BioMEMS Laboratory, Department of Electrical and Computer EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations