Biomedical Microdevices

, Volume 12, Issue 5, pp 923–933 | Cite as

Integrated microfluidic biophotonic chip for laser induced fluorescence detection



Integrated Lab-on-a-Chip or Micro-Total Analysis Systems offer several advantages for the detection of active chemical and biological species. In this work, an integrated microfluidic biophotonic chip is proposed for carrying out laser induced fluorescence detection. A Spectrometer-on-Chip device, specifically designed for multiple fluorescence detections at different emission wavelengths is integrated with the opto-microfluidic chip fabricated on Silicon-Polymer hybrid platform. The input fiber from the laser source, and output fiber coupled with a Spectrometer-on-Chip were integrated with the microfluidic channel so as to make a robust setup. Fluorescence detection was carried out using Alexafluor 647 tagged antibody particles. The experimental results show that the proposed biophotonic microfluidic device is highly suitable for high throughput detection of chemical and biological specimens.


Lab-on-a-Chip Biophotonics Microfluidics Spectrometer-on-Chip Laser-induced fluorescence Alexafluor 647 Hybrid integration 


  1. P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74, 2637–2652 (2002)CrossRefGoogle Scholar
  2. S. Balslev, A.M. Jørgensen, B.B. Olsen, K.B. Mogensen, K.B. Mogensen, D. Snakenborg, O. Geschke, J.P. Kutter, A. Kristensen, Lab-on-a-chip with integrated optical transducers. Lab Chip 6, 213–217 (2006)CrossRefGoogle Scholar
  3. A. Bettiol, E. Teo, C. Udalagama, S.V. Rao, J. van Kan, P. Shao, F. Watt, Integrating photonic and microfluidic structures on a device fabricated using proton beam writing. Proc.of SPIE Vol 6186, 61860F-1–61860F-8 (2006)Google Scholar
  4. M. Brehmer, L. Conrad, L. Funk, New developments in soft lithography. J. Dispers. Sci. Technol. 24, 291–304 (2003)CrossRefGoogle Scholar
  5. M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, An integrated nanoliter DNA analysis device. Science 282, 484 (1998)CrossRefGoogle Scholar
  6. M.L. Chabinyc, D.T. Chiu, J.C. McDonald, A.D. Stroock, J.F. Christian, A.M. Karger, G.M. Whitesides, An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal. Chem. 73, 4491–4498 (2001)CrossRefGoogle Scholar
  7. A. Chandrasekaran, A. Acharya, J.L. You, K.Y. Soo, M. Packirisamy, I. Stiharu, A. Darveau, Hybrid integrated silicon microfluidic platform for fluorescence based biodetection. Sensors 7, 1901–1915 (2007)CrossRefGoogle Scholar
  8. W.J. Chang, D. Akin, M. Sedlak, M.R. Ladisch, R. Bashir, Poly (dimethylsiloxane)(PDMS) and silicon hybrid biochip for bacterial culture. Biomed. Microdevices 5, 281–290 (2003)CrossRefGoogle Scholar
  9. D.A. Cohen, J.A. Nolde, C.S. Wang, E.J. Skogen, A. Rivlin, L.A. Coldren, Biophotonic integrated circuits. Proc.SPIE 5594, 81–93 (2004)CrossRefGoogle Scholar
  10. P.S. Dittrich, K. Tachikawa, A. Manz, Micro total analysis systems. Latest advancements and trends. Anal. Chem. 78, 3887–3908 (2006)CrossRefGoogle Scholar
  11. P. Friis, K. Hoppe, O. Leistiko, K.B. Mogensen, J. Hübner, J.P. Kutter, Monolithic integration of microfluidic channels and optical waveguides in silica on silicon. Appl. Opt. 40, 6246–6251 (2001)CrossRefGoogle Scholar
  12. R. Irawan, C.M. Tay, S.C. Tjin, C.Y. Fu, Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications. Lab Chip 6, 1095–1098 (2006)CrossRefGoogle Scholar
  13. S.C. Jakeway, A.J. de Mello, E.L. Russell, Miniaturized total analysis systems for biological analysis. Fresenius J. Anal. Chem. 366, 525–539 (2000)CrossRefGoogle Scholar
  14. S. Janz, A. Balakrishnan, S. Charbonneau, P. Cheben, M. Cloutier, A. Delage, K. Dossou, L. Erickson, M. Gao, P. Krug, Planar waveguide echelle gratings in silica-on-silicon. IEEE Photonics Technol Lett 16, 503–505 (2004)CrossRefGoogle Scholar
  15. L. Jiang, K. P. Gerhardt, B. Myer, Y. Zohar, S. Pau, An SU-8 based fluidic immuno-spectroscopic lab-on-a-chip for rapid quantitative detection of biomolecules. Micro Electro Mechanical Systems, 2008.MEMS 2008.IEEE 21st International Conference on, 204–207 (2008)Google Scholar
  16. P. Krulevitch, W. Benett, J. Hamilton, M. Maghribi, K. Rose, Polymer-based packaging platform for hybrid microfluidic systems. Biomed. Microdevices 4, 301–308 (2002)CrossRefGoogle Scholar
  17. L. Landsberger, M. Kharizi, M. Pranjape, On hillocks generated during anisotropic etching of silicon in TMAH. J Microelectromech Syst 5(2), 106–116 (1996)CrossRefGoogle Scholar
  18. A. Leeds, E. Van Keuren, M. Durst, T. Schneider, J. Currie, M. Paranjape, Integration of microfluidic and microoptical elements using a single-mask photolithographic step. Sens Actuators A Phys 115, 571–580 (2004)CrossRefGoogle Scholar
  19. O. Leistiko, P.F. Jensen, Integrated bio/chemical microsystems employing optical detection: the clip-on. J Micromech. Microeng 8, 148–150 (1998)CrossRefGoogle Scholar
  20. V. Lien, Y. Berdichevsky, Y. H. Lo, J. Khandurina, A. Guttman, Monolithic photonics-microfluidics integration for micrototal analysis systems. Lasers and Electro-Optics, 2003.CLEO‘03.Conference on 4, (2003)Google Scholar
  21. J.C. McDonald, G.M. Whitesides, Poly (dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002)CrossRefGoogle Scholar
  22. M. Packirisamy, A. Balakrishnan, Planar waveguide based grating device and spectrometer for species-specific wavelength detection. U.S Patent No. 7324195, January (2008)Google Scholar
  23. D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz, Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636 (2002)CrossRefGoogle Scholar
  24. J.A. Rogers, R.G. Nuzzo, Recent progress in soft lithography. Materials Today 8, 50–56 (2005)CrossRefGoogle Scholar
  25. J.M. Ruano, A. Glidle, A. Cleary, A. Walmsley, J.S. Aitchison, J.M. Cooper, Design and fabrication of a silica on silicon integrated optical biochip as a fluorescence microarray platform. Biosens. Bioelectron. 18, 175–184 (2003)CrossRefGoogle Scholar
  26. B. Samel, V. Nock, A. Russom, P. Griss, G. Stemme, A disposable lab-on-a-chip platform with embedded fluid actuators for active nanoliter liquid handling. Biomed. Microdevices 9, 61–67 (2007)CrossRefGoogle Scholar
  27. J. Seo, L.P. Lee, Disposable integrated microfluidics with self-aligned planar microlenses. Sens Actuators B, Chem 99, 615–622 (2004)CrossRefGoogle Scholar
  28. B.G. Splawn, F.E. Lytle, On-chip absorption measurements using an integrated waveguide. Anal. Bioanal. Chem. 373, 519–525 (2002)CrossRefGoogle Scholar
  29. X.T. Su, K. Singh, C. Capjack, J. Petrcek, C. Backhouse, W. Rozmus, Measurements of light scattering in an integrated microfluidic waveguide cytometer. J. Biomed. Opt. 13, 024024 (2008)CrossRefGoogle Scholar
  30. E. Thrush, O. Levi, W. Ha, K. Wang, S.J. Smith, J.S. Harris, Integrated bio-fluorescence sensor. J. Chromatogr. A 1013, 103–110 (2003)CrossRefGoogle Scholar
  31. T. Vilkner, D. Janasek, A. Manz, Micro total analysis systems. Recent developments. Anal. Chem. 76, 3373–3385 (2004)CrossRefGoogle Scholar
  32. J.R. Webster, M.A. Burns, D.T. Burke, C.H. Mastrangelo, Monolithic capillary electrophoresis device with integrated fluorescence detector. Anal. Chem. 73, 1622–1626 (2001)CrossRefGoogle Scholar
  33. I.M. White, H. Zhu, J. Suter, N.M. Hanumegowda, H. Oveys, M. Zourob, X. Fan, Refractometric sensors for lab-on-a-chip based on optical ring resonators. IEEE Sens. J 7, 28–35 (2007)CrossRefGoogle Scholar
  34. Y. Xia, G.M. Whitesides, Soft lithography. Angew. Chem. Int. Ed. 37, 550–575 (1998)CrossRefGoogle Scholar
  35. S. Yegnanarayanan, W. Roman, M. Soltani, G. Cremona, H. Lu, A. Adibi, On-chip integration of microfluidic channels with ultra-high Q silicon microdisk resonators for lab-on-a-chip sensing applications. in The 20th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2007, LEOS, 50–51 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Arvind Chandrasekaran
    • 1
  • Muthukumaran Packirisamy
    • 1
  1. 1.Optical Bio Microsystems Laboratory, Department of Mechanical EngineeringConcordia UniversityMontrealCanada

Personalised recommendations