Biomedical Microdevices

, Volume 12, Issue 5, pp 915–921 | Cite as

Development and characterization of a scalable microperforated device capable of long-term zero order drug release

  • Ashish Rastogi
  • Zhiquan Luo
  • Zhuojie Wu
  • Paul S. Ho
  • Phillip D. Bowman
  • Salomon Stavchansky


A drug delivery system that consists of microperforated polyimide microtubes was developed and characterized. Two groups of polyimide tubes were used. One set consisted of microtubes (I.D. = 125 μm) with 32.9 ± 1.7 μm size holes. The second set consisted of larger tubes (I.D. = 1000 μm) with 362–542 μm holes. The number of holes was varied between 1 and 3. The small tubes were loaded with crystal violet (CV) and ethinyl estradiol (EE) and the drug release studies were performed in 0.01 M phosphate buffered saline (PBS) (pH 7.1–7.4) at 37.0 ± 1.0°C for upto 4 weeks. The large tubes were loaded with CV and the drug release was studied in vitro in PBS and also ex vivo in rabbit’s vitreous humor. Linear release rates with R2 > 0.9900 were obtained for all groups with CV and EE. Release rates of 7.8 ± 2.5, 16.2 ± 5.5, and 22.5 ± 6.0 ng/day for CV and 30.1 ± 5.8 ng/day for EE were obtained for small tubes. For large tubes, a release rate of 10.8 ± 4.1, 15.8 ± 4.8 and 22.1 ± 6.7 μg/day was observed in vitro in PBS and a release rate of 5.8 ± 1.8 μg/day was observed ex vivo in vitreous humor.


Drug delivery device Microholes Polymer free Zero order Long term release 


  1. AbraxisKits. Accessed on Jun 05 2009
  2. C. Berde, S. Nurko, N. Engl. J. Med. 358(22), 2400–2402 (2008)CrossRefGoogle Scholar
  3. I.H. Black, J. McManus, Prehosp. Emerg. Care 13(2), 223–227 (2009)CrossRefGoogle Scholar
  4. O.A. Boubriak, J.P. Urban, S. Akhtar, K.M. Meek, A.J. Bron, Exp. Eye Res. 71(5), 503–514 (2000)CrossRefGoogle Scholar
  5. M.R. Bragulat, M.L. Abarca, M.T. Bruguera, F.J. Cabanes, Appl. Environ. Microbiol. 57(9), 2777–2780 (1991)Google Scholar
  6. A.N. Edward, N.J. Abbott, L. Drewes, Q.R. Smith, P. Couraud, E.A. Chiocca, K.L. Audus, N.H. Greig, N.D. Doolittle, Neurosurgery 44(3), 604–608 (1999)CrossRefGoogle Scholar
  7. L.A. Geddes, R. Roeder, Ann. Biomed. Eng. 31(7), 879–890 (2003)CrossRefGoogle Scholar
  8. J. Hsu, Curr. Opin. Ophthalmol. 18(3), 235–239 (2007)CrossRefGoogle Scholar
  9. X. Huang, C.S. Brazel, J. Control Release 73(2–3), 121–136 (2001)CrossRefGoogle Scholar
  10. H. Kawakami, T. Kanamori, S. Kubota, J. Artif. Organs 6(2), 124–129 (2003)Google Scholar
  11. J.H. Kempen, S. Gangaputra, E. Daniel, G.A. Levy-Clarke, R.B. Nussenblatt, J.T. Rosenbaum, E.B. Suhler, J.E. Thorne, C.S. Foster, D.A. Jabs, K.J. Helzlsouer, Am. J. Ophthalmol. 146(6), 802–812 e801 (2008)CrossRefGoogle Scholar
  12. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y. Jiang, Opt. Lett. 26(23), 1912–1914 (2001)CrossRefGoogle Scholar
  13. S. Linder, H. Baltes, F. Gnaedinger, E. Doering, in Proceedings of IEEE The Ninth Annual International Workshop on Micro Electro Mechanical Systems (San Diego, CA, USA, 1996), pp. 38–43Google Scholar
  14. K.L. Macoul, D. Pavan-Langston, Arch. Ophthalmol. 93(8), 587–590 (1975)Google Scholar
  15. J.D. Markman, A. Philip, Anesthesiol. Clin. 25(4), 883–898 (2007). viiiCrossRefGoogle Scholar
  16. Merck-Index, The Merck Index. White House Station, New Jersey, (Merck & Co., Inc., White House Station, New Jersey, 2006)Google Scholar
  17. M. Niwa, H. Kawakami, M. Kanno, S. Nagaoka, T. Kanamori, T. Shinbo, S. Kubota, J. Biomater. Sci. Polym. Ed. 12(5), 533–542 (2001)CrossRefGoogle Scholar
  18. B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterial Science: An Introduction to Materials in Medicine London (Elsivier Academic, London, 2004)Google Scholar
  19. D.V. Reddy, V.E. Kinsey, Arch. Ophthalmol. 63, 715–720 (1960)Google Scholar
  20. J.R. Robinson, V.H.L. Lee, Controlled Drug Delivery. Fundamentals and Applications. New York (Marcel Dekker, New York, 1987)Google Scholar
  21. I. Safarik, M. Safarikova, Water Res. 36(1), 196–200 (2002)CrossRefGoogle Scholar
  22. M. Safarikova, I. Safarik, Eur. Cells Mater. 3(Suppl 2), 192–195 (2002)Google Scholar
  23. S.J. Segal, Stud. Fam. Plann. 14(6–7), 159–163 (1983)CrossRefGoogle Scholar
  24. M.M. Shaaban, S.I. Elwan, M.Y. el-Kabsh, S.A. Farghaly, N. Thabet, Contraception 30(5), 421–430 (1984)CrossRefGoogle Scholar
  25. D. Shi, Biomedical devices and their applications New York (Springer, New York, 2004)Google Scholar
  26. B. Steffansen, P. Ashton, A. Buur, Int. J. Pharm. 132, 243–250 (1996)CrossRefGoogle Scholar
  27. T. Stover, G. Paasche, T. Lenarz, T. Ripken, P. Breitenfeld, H. Lubatschowski, T. Fabian, Cochlear Implants Int. 8(1), 38–52 (2007)CrossRefGoogle Scholar
  28. J. Swarbrick, J.C. Boylan, Encyclopedia of Pharmaceutical Technology. New York (Marcel Dekker, New York, 2002)Google Scholar
  29. A. Urtti, Adv. Drug Deliv. Rev. 58(11), 1131–1135 (2006)CrossRefGoogle Scholar
  30. Varian-Inc. ds&cid = KNHMOHJMFL Accessed on July 27 2009
  31. Y. Zhou, X.Y. Wu, J. Control Release 90(1), 23–36 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ashish Rastogi
    • 1
    • 3
  • Zhiquan Luo
    • 2
  • Zhuojie Wu
    • 2
  • Paul S. Ho
    • 2
  • Phillip D. Bowman
    • 3
  • Salomon Stavchansky
    • 1
  1. 1.Division of Pharmaceutics, College of PharmacyThe University of Texas at AustinAustinUSA
  2. 2.Microelectronics Research Center, MER/MRCThe University of Texas at AustinAustinUSA
  3. 3.U.S. Army Institute of Surgical ResearchSan AntonioUSA

Personalised recommendations