Biomedical Microdevices

, Volume 12, Issue 5, pp 897–905 | Cite as

Patterned PDMS based cell array system: a novel method for fast cell array fabrication

  • Chin-Hsiung Hsieh
  • Chi-Jer Charles Huang
  • Yi-You Huang
Article

Abstract

Cell-cell interaction is important in numerous biological processes, including cell growth, cell differentiation and migration. The ability to generate pre-determined cell patterns or cell arrays on a study surface is crucial for cell-cell interaction studies. In this paper, we developed a method for fast cell array fabrication using laser sintering and the hydrophobicity of PDMS films. This approach can be easily adopted and is cost-effective. Hydrophobic PDMS films were fabricated into polymeric chips containing hundreds of microwells. The films were then transferred onto tissue culture surfaces to separate cells in the formation of cell arrays (Patterned PDMS based cell array system, PCAS). We used NIH/3T3 fibroblast cells to demonstrate the feasibility of PCAS. The success of fast fabrication of patterned cell arrays was obtained using different initial cell seeding densities. We also used poorly adherent PC-12 cells to demonstrate the cell-cell communication. Results showed that the method is very useful for studying topics such as cell-cell interaction, cell-substrate interaction or cell migration.

Keywords

Microarray Cell array Hydrophobic PDMS Cell-cell interaction 

References

  1. O.C. Attucks, K.S. Katula, FASEB J. 15, A258 (2001)Google Scholar
  2. A. Bernard, J.P. Renault, B. Michel, H.R. Bosshard, E. Delamarche, Adv. Mater. 12, 1067 (2000)CrossRefGoogle Scholar
  3. S.N. Bhatia, U.J. Balis, M.L. Yarmush, M. Toner, Biotechnol. Prog. 14, 378 (1998)CrossRefGoogle Scholar
  4. C.J. Campbell, N. O’Looney, M. Chong Kwan, J.S. Robb, A.J. Ross, J.S. Beattie, J. Petrik, P. Ghazal, Anal. Chem. 78, 1930 (2006)CrossRefGoogle Scholar
  5. S. Fujita, Y. Morita, H. Iwata, Anal. Bioanal. Chem. 391, 2753 (2008)CrossRefGoogle Scholar
  6. J. Fukuda, A. Khademhosseini, J. Yeh, G. Eng, J.J. Cheng, O.C. Farokhzad, R. Langer, Biomaterials 27, 1479 (2006)CrossRefGoogle Scholar
  7. L.E. Heasley, Oncogene 20, 1563 (2001)CrossRefGoogle Scholar
  8. C.H. Hsieh, Y.Y. Huang, U.S. patent pending. Application number 12/468,814. (Date of filing May 19, 2009; Date of publication July 09, 2010)Google Scholar
  9. S. Iwanaga, Y. Akiyama, A. Kikuchi, M. Yamato, K. Sakai, T. Okano, Biomaterials 26, 5395 (2005)CrossRefGoogle Scholar
  10. E.H. Javazon, D.C. Colter, E.J. Schwarz, D.J. Prockop, Stem Cells 19, 219 (2001)CrossRefGoogle Scholar
  11. R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, G.M. Whitesides, Biomaterials 20, 2363 (1999)CrossRefGoogle Scholar
  12. K. Kuwahara, Y. Saito, O. Nakagawa, I. Kishimoto, M. Harada, E. Ogawa, Y. Miyamoto, I. Hamanaka, N. Kajiyama, N. Takahashi, T. Izumi, R. Kawakami, N. Tamura, Y. Ogawa, K. Nakao, FEBS Lett. 452, 314 (1999)CrossRefGoogle Scholar
  13. R. Langer, J.P. Vacanti, Science 260, 920 (1993)CrossRefGoogle Scholar
  14. J.N. Lee, X. Jiang, D. Ryan, G.M. Whitesides, Langmuir 20, 11684 (2004)CrossRefGoogle Scholar
  15. J.C. Lotters, W. Olthuis, P.H. Veltink, P. Bergveld, J. Micromech. Microeng. 7, 145 (1997)CrossRefGoogle Scholar
  16. J. Magdalena, T.H. Millard, L.M. Machesky, J. Cell Sci. 116, 743 (2003)CrossRefGoogle Scholar
  17. J.C. McDonald, D.C. Duffy, J.R. Anderson, D.T. Chiu, H. Wu, O.J. Schueller, G.M. Whitesides, Electrophoresis 21, 27 (2000)CrossRefGoogle Scholar
  18. H.C. Moeller, M.K. Mian, S. Shrivastava, B.G. Chung, A. Khademhosseini, Biomaterials 29, 752 (2008)CrossRefGoogle Scholar
  19. J. Nakanishi, Y. Kikuchi, S. Inoue, K. Yamaguchi, T. Takarada, M. Maeda, J. Am. Chem. Soc. 129, 6694 (2007)CrossRefGoogle Scholar
  20. R. Onuki-Nagasaki, A. Nagasaki, K. Hakamada, T.Q. Uyeda, S. Fujita, M. Miyake, J. Miyake, Lab Chip 8, 1502 (2008)CrossRefGoogle Scholar
  21. J.H. Park, K.D. Park, Y.H. Bae, Biomaterials 20, 943 (1999)CrossRefGoogle Scholar
  22. N. Patrito, C. McCague, P.R. Norton, N.O. Petersen, Langmuir 23, 715 (2007)CrossRefGoogle Scholar
  23. O. Quehenberger, J. Lipid Res. 46, 1582 (2005)CrossRefGoogle Scholar
  24. A. Roda, M. Guardigli, C. Russo, P. Pasini, M. Baraldini, Biotechniques 28, 492 (2000)Google Scholar
  25. A. Rosenthal, A. Macdonald, J. Voldman, Biomaterials 28, 3208 (2007)CrossRefGoogle Scholar
  26. E.A. Roth, T. Xu, M. Das, C. Gregory, J.J. Hickman, T. Boland, Biomaterials 25, 3707 (2004)CrossRefGoogle Scholar
  27. R. Singhvi, A. Kumar, G.P. Lopez, G.N. Stephanopoulos, D.I. Wang, G.M. Whitesides, D.E. Ingber, Science 264, 696 (1994)CrossRefGoogle Scholar
  28. D.Y. Wang, Y.C. Huang, H.C. Chiang, A.M. Wo, Y.Y. Huang, J. Biomed. Mater. Res. B Appl. Biomater. 80B, 447 (2007)CrossRefGoogle Scholar
  29. K.A. Woodrow, M.J. Wood, J.K. Saucier-Sawyer, C. Solbrig, W.M. Saltzman, Tissue Eng. A 15, 1169 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chin-Hsiung Hsieh
    • 1
  • Chi-Jer Charles Huang
    • 1
  • Yi-You Huang
    • 1
  1. 1.Institute of Biomedical Engineering, College of Engineering, College of MedicineNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations