Biomedical Microdevices

, Volume 12, Issue 5, pp 849–854 | Cite as

Fluidic measurement of electric field sensitivity of Ti-GaAs Schottky junction gated field effect biosensors

  • Woo-Jin Chang
  • Ho-Jun Suk
  • A. K. M. Newaz
  • Kirk D. Wallace
  • Samuel A. Wickline
  • Stuart A. Solin
  • Rashid Bashir
Article

Abstract

We report the electric field and pH sensitivity of fluid gated metal-semiconductor hybrid (MSH) Schottky structures consisting of a Titanium layer on n-type GaAs. Compared to standard field-effect sensors, the MSH Schottky structures are 21 times more sensitive to electric field of −46.6 V/cm and show about six times larger resistance change as pH of the solution is decreased from 8.17 to 5.54. The potential change at the fluidic gate and passivation layer interface by bias voltages and pH are mirrored by the metal shunt, resulting in larger depletion widths under the Schottky junction and resistance change as compared to sensors with no Schottky junction. 2D numerical simulation results are in good agreement with the measured data and suggest thinner mesa with lower doping density can further increase device sensitivity.

Keywords

Field effect biosensor Schottky junction Fluidic measurement Electric field sensing 

References

  1. A.K.M. Newaz, Y. Wang, J. Wu, S.A. Solin, V.R. Kavasseri, I.S. Ahmad, I. Adesida, Phys. Rev. B 79, 195308 (2009)CrossRefGoogle Scholar
  2. C.-H. Kim, C. Jung, H.G. Park, Y.-K. Choi, Biochip J. 2, 127–134 (2008)Google Scholar
  3. H.H. Wieder, Surface Science 132, 390–405 (1983)CrossRefGoogle Scholar
  4. J.W. Park, H.S. Jung, H.Y. Lee, T. Kawai, Biotechnol. Bioproc. Eng. 10, 505–509 (2005)CrossRefGoogle Scholar
  5. J.-I. Hahm, C.M. Lieber, Nano Lett. 4, 51–54 (2004)CrossRefGoogle Scholar
  6. K. Lee, P.R. Nair, M.A. Alam, D.B. Janes, H.P. Wampler, D.Y. Zemlyanov, A. Ivanisevic, J. Appl. Phys. 103, 114510 (2008)CrossRefGoogle Scholar
  7. O.H. Elibol, B. Reddy Jr., R. Bashir, Appl. Phys. Lett. 92, 193904 (2008)CrossRefGoogle Scholar
  8. P. Bergveld, Sens. Actuators B 88, 1–20 (2003)CrossRefGoogle Scholar
  9. P. Estrela, P. Migliorato, J. Mater. Chem. 17, 219–224 (2007)CrossRefGoogle Scholar
  10. R.S. Popovic, Hall effect devices (dam Hilger, Bristol, 1991)Google Scholar
  11. S. Dushman, Rev. Mod. Phys. 2, 381–476 (1930)CrossRefGoogle Scholar
  12. S. Koch, P. Woias, L.K. Meixner, S. Drost, H. Wolf, Biosens. Bioelectron. 14, 413–421 (1999)CrossRefGoogle Scholar
  13. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66–69 (2001)CrossRefGoogle Scholar
  14. Y. Cui, C.M. Lieber, Science 291, 851–853 (2001)CrossRefGoogle Scholar
  15. Y. Cui, Q. Wei, H. Park, C.M. Lieber, Science 293, 1289–1292 (2001)CrossRefGoogle Scholar
  16. Y. Cui, X. Duan, J. Hu, C.M. Lieber, J. Phys. Chem. B 104, 52135216 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Woo-Jin Chang
    • 1
  • Ho-Jun Suk
    • 1
  • A. K. M. Newaz
    • 2
    • 4
  • Kirk D. Wallace
    • 2
  • Samuel A. Wickline
    • 2
  • Stuart A. Solin
    • 2
    • 3
  • Rashid Bashir
    • 1
  1. 1.Department of Electrical and Computer Engineering, Department of Bioengineering, Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Physics and Center for Materials InnovationWashington University in St. LouisSt. LouisUSA
  3. 3.Blackett LaboratoryImperial College LondonLondonUK
  4. 4.Department of Physics and AstronomyVanderbilt UniversityNashvilleUSA

Personalised recommendations