Biomedical Microdevices

, Volume 12, Issue 5, pp 841–848 | Cite as

The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls



Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold.


Microvessel scaffold PLGA Nanostructure Circular microchannels Bovine endothelial cells 


  1. J. Borenstein, H. Terai, K.R. King, E.J. Weinberg, J.P. Vacanti, Biomed. Microdevices 4(3), 167 (2002)CrossRefGoogle Scholar
  2. T.I. Croll, A.J. O’Connor, G.W. Stevens, J.J. Cooper-White, Biomacromolecules 5(2), 463 (2004)CrossRefGoogle Scholar
  3. M.J. Dalby, Med. Eng. Phys. 27, 730 (2005)CrossRefGoogle Scholar
  4. C. Fidkowski, M. Kaazempur-Mofrad, J. Borenstein, J.P. Vacanti, R. Langer, Y. Wang, Tissue Eng. 11(1/2), 302 (2005)CrossRefGoogle Scholar
  5. B. Jonsson, G. Liminga, K. Csoka, H. Fridborg, S. Dhar, P. Nygren, R. Larsson, Eur. J. Cancer 32(5), 883 (1996)CrossRefGoogle Scholar
  6. K. Kieswetter, Z. Schwartz, T.W. Hummert, D.L. Cocharn, J. Simpson, D.D. Dean, B.D. Boyan, J. Biomed. Mater. Res. 32, 55 (1996)CrossRefGoogle Scholar
  7. S.S. Kulkarni, R. Orth, M. Ferrari, N.I. Moldovan, Biosens. Bioelectron. 19, 1401 (2004)CrossRefGoogle Scholar
  8. M. Lampin, R. Warocquier-clerout, C. Legris, M. Degrange, M.F. Sigot-Luizard, J. Biomed. Mater. Res. 36, 99 (1997)CrossRefGoogle Scholar
  9. R. Langer, J.P. Vacanti, Science 260, 920 (1993)CrossRefGoogle Scholar
  10. O. Legrand, G. Simonin, J.Y. Perrot, R. Zittoun, J.P. Marie, Blood 91(12), 4480 (1998)Google Scholar
  11. F. Li, L. Zhang, R.M. Metzger, Chem. Mater. 10, 2470 (1998)CrossRefGoogle Scholar
  12. A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gösele, J. Vac. Sci. Technol. A 17, 1428 (1999)CrossRefGoogle Scholar
  13. D.C. Miller, K.M. Haberstroh, T.J. Webster, J. Biomed. Mater. Res. 678–684 (2006)Google Scholar
  14. B.M. Min, Y. You, J.M. Kim, S.J. Lee, W.H. Park, Carbohydr. Polym. 57, 285 (2004)CrossRefGoogle Scholar
  15. N.I. Moldovan, M. Ferrari, Arch. Pathol. Lab. Med. 126(3), 320 (2002)Google Scholar
  16. T. Paragkumar N, D. Edith, S. Jean-Luc, Appl. Surf. Sci. 253(5), 2758 (2006)CrossRefGoogle Scholar
  17. G.E. Park, K. Park, T.J. Webster, Biomaterials 26(16), 3075 (2005)CrossRefGoogle Scholar
  18. J.K. Savaiano, T.J. Webster, Biomaterials 25, 1205 (2004)CrossRefGoogle Scholar
  19. M. Shin, K. Matsuda, O. Ishii, H. Terai, M. Kaazempur-Mofrad, J. Borenstein, M. Detmar, J.P. Vacanti, Biomed. Microdevices 6(4), 269 (2004)CrossRefGoogle Scholar
  20. J. Uggeri, R. Gatti, S. Belletti, R. Scandroglio, R. Corradini, B.M. Rotoli, G. Orlandini, Histochem. Cell Biol. 122(5), 499 (2004)CrossRefGoogle Scholar
  21. G.J. Wang, Y.F. Hsu, Biomed. Microdevices 8(1), 51 (2006)CrossRefGoogle Scholar
  22. G.J. Wang, C.L. Chen, S.H. Hsu, Y.L. Chiang, Microsyst. Technol. 12(1–2), 120 (2005)CrossRefGoogle Scholar
  23. G.J. Wang, Y.F. Hsu, S.H. Hsu, R.H. Horng, Biomed. Microdevices 8(1), 17 (2006)CrossRefGoogle Scholar
  24. G.J. Wang, K.H. Ho, S.H. Hsu, K.P. Wang, Biomed. Microdevices 9, 657 (2007a)CrossRefGoogle Scholar
  25. G.J. Wang, C.C. Hsueh, S.H. Hsu, H.S. Hung, J. Micromechanics Microengineering 17, 2000 (2007b)CrossRefGoogle Scholar
  26. G.J. Wang, Y.C. Lin, J.E. Lee, C.C. Hsueh, S.H. Hsu, H.S. Hung, Biomed. Microdevices 11, 843 (2009)CrossRefGoogle Scholar
  27. T.J. Webster, Z. Tong, J. Liu, M.K. Banks, Nanotechnology 16, S449 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Chung-Hsing UniversityTaichungTaiwan
  2. 2.Institute of Biomedical EngineeringNational Chung-Hsing UniversityTaichungTaiwan
  3. 3.Taiwan Semiconductor Manufacturing CompanyHsinchuTaiwan
  4. 4.Institute of Polymer Science and EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations