Biomedical Microdevices

, Volume 12, Issue 5, pp 809–819 | Cite as

Adhesion and proliferation of skeletal muscle cells on single layer poly(lactic acid) ultra-thin films

  • Leonardo Ricotti
  • Silvia Taccola
  • Virginia Pensabene
  • Virgilio Mattoli
  • Toshinori Fujie
  • Shinji Takeoka
  • Arianna Menciassi
  • Paolo Dario
Article

Abstract

An increasing interest in bio-hybrid systems and cell-material interactions is evident in the last years. This leads towards the development of new nano-structured devices and the assessment of their biocompatibility. In the present study, the development of free-standing single layer poly(lactic acid) (PLA) ultra-thin films is described, together with the analysis of topography and roughness properties. The biocompatibility of the PLA films has been tested in vitro, by seeding C2C12 skeletal muscle cells, and thus assessing cells shape, density and viability after 24, 48 and 72 h. The results show that free-standing flexible PLA nanofilms represent a good matrix for C2C12 cells adhesion, spreading and proliferation. Early differentiation into myotubes is also allowed. The biocompatibility of the novel ultra-thin films as substrates for cell growth promotes their application in the fields of regenerative medicine, muscle tissue engineering, drug delivery, and—in general—in the field of bio-hybrid devices.

Keywords

Nanofilms Biocompatibility Poly(lactic acid) Skeletal muscle cells C2C12 Bio-hybrid devices 

References

  1. A.D. Bach, J.P. Beier, J. Stern-Staeter, R.E. Horch, Skeletal muscle tissue engineering. J. Cell. Mol. Med. 10(3), 413–422 (2004)CrossRefGoogle Scholar
  2. H.M. Blau, C.P. Chiu, C. Webster, Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32(4), 1171–1180 (1983)CrossRefGoogle Scholar
  3. D.E. Discher, P. Janmey, Y. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751), 1139–1143 (2005)CrossRefGoogle Scholar
  4. A.J. Engler, M.A. Griffin, S. Sen, C.G. Bönnemann, H.L. Sweeney, D.E. Discher, Myotubes differentiate optimally on substrates with tissue-like stiffness pathological implications for soft or stiff microenvironments. J. Cell Biol. 166(6), 877–887 (2004)CrossRefGoogle Scholar
  5. A.W. Feinberg, A. Feigel, S.S. Shevkoplyas, S. Sheehy, G.M. Whitesides, K.K. Parker, Muscular thin films for building actuators and powering devices. Science 317(5843), 1366–1370 (2007)CrossRefGoogle Scholar
  6. T. Fujie, Y. Okamura, S. Takeoka, Ubiquitous transference of a free-standing polysaccharide nanosheet with the development of a nano-adhesive plaster. Adv. Mater. 19, 3549–3553 (2007)CrossRefGoogle Scholar
  7. H. Fujita, T. Nedachi, M. Kanzaki, Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp. Cell Res. 313(9), 1853–1865 (2007)CrossRefGoogle Scholar
  8. H. Herr, R.G. Dennis, A swimming robot actuated by living muscle tissue. J. Neuroeng. Rehabil. 1, 6 (2004)CrossRefGoogle Scholar
  9. Y. Hiratsuka, M. Miyata, T. Tada, T.Q.P. Uyeda, A microrotary motor powered by bacteria. Proc. Natl Acad. Sci. 103, 13618–13623 (2006)CrossRefGoogle Scholar
  10. C.K. Huang, W.M. Lou, C.J. Tsai, T.C. Wu, H.Y. Lin, Mechanical properties of polymer thin film measured by the bulge test. Thin Solid Films 515(18), 7222–7226 (2007)CrossRefGoogle Scholar
  11. J.A. Hubbell, Bioactive biomaterials. Curr. Opin. Biotechnol. 10(2), 123–129 (1999)CrossRefGoogle Scholar
  12. T. Ishibashi, Y. Hoshino, H. Kaji, M. Kanzaki, M. Sato, M. Nishizawa, Localized electrical stimulation to C2C12 myotubes cultured on a porous membrane-based substrate. Biomed. Microdevices 11(2), 413–419 (2008)CrossRefGoogle Scholar
  13. D. Kim, J. Park, K.Y. Suh, P. Kim, S.K. Choi, S. Ryu, S. Park, A.H. Lee, B. Kim, Fabrication of patterned micromuscles with high activity for powering biohybrid microdevices. Sens. Actuators B 117, 391–400 (2006)CrossRefGoogle Scholar
  14. K. Morishima, Y. Tanaka, M. Ebara, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Demonstration of a bio-microactuator powered by cultured cardiomyocytes coupled to hydrogel micropillars. Sens. Actuators B 119, 345–350 (2006)CrossRefGoogle Scholar
  15. Y. Okamura, K. Kabata, M. Kinoshita, D. Saitoh, S. Takeoka, Free-standing biodegradable poly(lactic acid) nanosheet for sealing operations in surgery. Adv. Mater. 21, 1–5 (2009)CrossRefGoogle Scholar
  16. V. Pensabene, V. Mattoli, T. Fujie, A. Menciassi, S. Takeoka, P. Dario, Magnetic nanosheet adhesion to mucosal tissue, in Proc. IEEE Nano, (Genova, 2009), pp. 489–493Google Scholar
  17. V. Raffa, V. Pensabene, A. Menciassi, P. Dario, Design criteria of neuron/electrode interface. The focused ion beam technology as an analytical method to investigate the effect of electrode surface morphology on neurocompatibility. Biomed. Microdevices 9(3), 371–383 (2007)CrossRefGoogle Scholar
  18. K. Ren, T. Crouzier, C. Roy, C. Picart, Polyelectrolyte multilayer films of controlled stiffness modulate myoblast cells differentiation. Adv. Funct. Mater. 18(9), 1378–1389 (2008)CrossRefGoogle Scholar
  19. A. Sathaye, N. Bursac, S. Sheehy, L. Tung, Electrical pacing counteracts instrinsic shortening of action potential duration of neonatal rat ventricular cells in culture. J. Mol. Cell. Cardiol. 41, 633–641 (2006)CrossRefGoogle Scholar
  20. H. Shin, S. Jo, A.G. Mikos, Review: biomimetic materials for tissue engineering. Biomaterials 24, 4352–4364 (2003)Google Scholar
  21. Y. Tanaka, K. Morishima, T. Shimizu, A. Kikuchi, M. Yamato, T. Okano, T. Kitamori, Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. Lab Chip 6, 230–235 (2006)CrossRefGoogle Scholar
  22. Y. Tanaka, K. Sato, T. Shimizu, M. Yamato, T. Okano, T. Kitamori, Biological cells mon microchips: new technologies and applications. Biosens. Bioelectron. 23, 449–458 (2007a)CrossRefGoogle Scholar
  23. Y. Tanaka, K. Sato, T. Shimizu, M. Yamato, T. Okano, T. Kitamori, A micro-spherical heart pump powered by cultured cardiomyocytes. Lab Chip 7(2), 207–212 (2007b)CrossRefGoogle Scholar
  24. Z. Tang, Y. Wang, P. Podsiadlo, N.A. Kotov, Biomedical applications of Layer-by-Layer assembly: from biomimetics to tissue engineering. Adv. Mater. 18(24), 3203–3224 (2006)CrossRefGoogle Scholar
  25. H. Vandenburgh, J. Shansky, F. Benesch-Lee, V. Barbata, J. Reid, L. Thorrez, R. Valentini, G. Crawford, Drug-screening platform based on the contractility of tissue-engineered muscle. Muscle Nerve 37, 438–447 (2008)CrossRefGoogle Scholar
  26. R. Vendamme, S.Y. Onoue, A. Nakao, T. Kunitake, Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nat. Mater. 5(6), 494–501 (2006)CrossRefGoogle Scholar
  27. N.R. Washburn, K.M. Yamada, C.G. Simon, S.B. Kennedy, E.J. Amis, High-throughput investigation of osteoblast response to polymer crystallinity: influence of nanometer-scale roughness on proliferation. Biomaterials 25(7–8), 1215–1224 (2004)CrossRefGoogle Scholar
  28. D.B. Weibel, P. Garstecki, D. Ryan, W.R. DiLuzio, M. Mayer, J.E. Seto, G.M. Whitesides, Microoxen: microorganisms to move microscale loads. Proc. Natl. Acad. Sci. 102, 11963–11967 (2005)CrossRefGoogle Scholar
  29. K. Wilson, P. Molnar, J. Hickman, Integration of functional myotubes with a Bio-MEMS device for non-invasive interrogation. Lab Chip 7, 920–922 (2007)CrossRefGoogle Scholar
  30. J. Xi, J.J. Schmidt, C.D. Montemagno, Self-assembled microdevices driven by muscle. Nat. Mater. 4, 180–184 (2005)CrossRefGoogle Scholar
  31. D. Yaffe, O. Saxel, A myogenic cell line with altered serum requirements for differentiation. Differentiation 7(3), 159–166 (1977)CrossRefGoogle Scholar
  32. K. Yamasaki, H. Hayashi, K. Nishiyama, H. Kobayashi, S. Uto, H. Kondo, S. Hashimoto, T. Fujisato, Control of myotube contraction using electrical pulse stimulation for bio-actuator. J. Artif. Organs 12(2), 131–137 (2009)CrossRefGoogle Scholar
  33. Y. Zhao, J.S. Marshall, Spin coating of a colloidal suspension. Phys. Fluids 20(4), 043302 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Leonardo Ricotti
    • 1
    • 4
  • Silvia Taccola
    • 1
  • Virginia Pensabene
    • 2
  • Virgilio Mattoli
    • 2
  • Toshinori Fujie
    • 3
  • Shinji Takeoka
    • 3
  • Arianna Menciassi
    • 1
    • 2
  • Paolo Dario
    • 1
    • 2
  1. 1.Scuola Superiore Sant’AnnaPisaItaly
  2. 2.Italian Institute of Technology (IIT)GenovaItaly
  3. 3.Faculty of Science and Engineering, Waseda Universtiy (TWIns)TokyoJapan
  4. 4.CRIM & ARTS Lab—Scuola Superiore Sant’AnnaPontedera (PI)Italy

Personalised recommendations