Skip to main content

Advertisement

Log in

An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid—based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • R.C. Anderson, X. Su, G.J. Bogdan, J. Fenton, Nucleic Acids Res. 28, e60 (2000)

    Article  Google Scholar 

  • P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella Jr., F. Milanovich, Science 284, 449–450 (1999)

    Article  Google Scholar 

  • P. Belgrader, S. Young, B. Yuan, M. Primeau, L.A. Christel, F. Pourahmadi, M.A. Northrup, Anal. Chem. 73, 286–289 (2001)

    Article  Google Scholar 

  • N. Beyor, L. Yi, T.S. Seo, R.A. Mathies, Anal. Chem. 81, 3523–3528 (2009)

    Article  Google Scholar 

  • J.M. Blatt, M.P. Allen, S. Baddam, C.L. Chase, B.N. Dasu, D.M. Dickens, R.T.H.S.J. Hardt, Y. Hsu, C.T. Kitazawa, S. Li, W.M. Mangan, P.J. Patel, J.W. Pfeiffer, N.B. Quiwa, M.A. Scratch, J.T. Widunas, Clin. Chem. (Washington, D. C.) 44, 2051–2052 (1998)

    Google Scholar 

  • R. Boom, C.J. Sol, M.M. Salimans, C.L. Jansen, P.M. Wertheim-van Dillen, J. van der Noordaa, Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 28, 495–503 (1990)

    Google Scholar 

  • M.C. Breadmore, K.A. Wolfe, I.G. Arcibal, W.K. Leung, D. Dickson, B.C. Giordano, M.E. Power, J.P. Ferrance, S.H. Feldman, P.M. Norris, J.P. Landers, Anal. Chem. 75, 1880–1886 (2003)

    Article  Google Scholar 

  • Y.L.M. Brivio, A. Ahlford, B.G. Kjeldsen, J.. Reimers, M. Bu, A.-C. Syvänen, D.D. Bang and A. Wolff, μTAS 2007, pp. 59–61 (2007)

  • M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke, Science 282, 484–487 (1998)

    Article  Google Scholar 

  • Z. Chen, J. Wang, S. Qian, H.H. Bau, Lab Chip 5, 1277–1285 (2005)

    Article  Google Scholar 

  • Y.C. Chung, M.S. Jan, Y.C. Lin, J.H. Lin, W.C. Cheng, C.Y. Fan, Lab Chip 4, 141–147 (2004)

    Article  Google Scholar 

  • P.L.A.M. Corstjens, L.V. Lieshout, M. Zuiderwijk, D. Kornelis, H.J. Tanke, A.M. Deelder, G.J.V. Dam, J. Clin. Microbiol. 24, 171–176 (2008)

    Article  Google Scholar 

  • C.J. Easley, J.M. Karlinsey, J.P. Landers, Lab Chip 6, 601–610 (2006a)

    Article  Google Scholar 

  • C.J. Easley, J.M. Karlinsey, J.M. Bienvenue, L.A. Legendre, M.G. Roper, S.H. Feldman, M.A. Hughes, E.L. Hewlett, T.J. Merkel, J.P. Ferrance, J.P. Landers, A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc. Natl. Acad. Sci. USA. 19, 19272–19277 (2006b)

    Article  Google Scholar 

  • B.C. Giordano, J. Ferrance, S. Swedberg, A.F. Hühmer, J.P. Landers, Anal. Biochem. 291, 124–132 (2001)

    Article  Google Scholar 

  • H. Gong, N. Ramalingam, L. Chen, J. Che, Q. Wang, Y. Wang, X. Yang, P.H. Yap, C.H. Neo, Microfluidic handling of PCR solution and DNA amplification on a reaction chamber array biochip. Biomed. Microdevices 8, 167–176 (2006)

    Article  Google Scholar 

  • K.A. Hagan, J.M. Bienvenue, C.A. Moskaluk, J.P. Landers, Microchip-based solid-phase purification of RNA from biological samples. Anal. Chem. 80, 8453–8460 (2008)

    Article  Google Scholar 

  • J.A. Higgins, S. Nasarabadi, J.S. Karns, D.R. Shelton, M. Cooper, A. Gbakima, R.P. Koopman, Biosens. Bioelectron. 18, 1115–1123 (2003)

    Article  Google Scholar 

  • F.-C. Huang, C.-S. Liao, G.-B. Lee, An integrated microfluidic chip for DNA/RNA amplification, electrophiresis, separation and on-line optical detection. Eelectrophoresis 27, 3297–3305 (2006)

    Article  Google Scholar 

  • N. Ivanova, A. Sorokin, I. Anderson, N. Galleron, B. Candelon, V. Kapatral, A. Bhattacharyya, G. Reznik, N. Mikhailova, A. Lapidus, L. Chu, M. Mazur, E. Goltsman, N. Larsen, M. Souza, T. Walunas, Y. Grechkin, G. Pusch, R. Haselkorn, M. Fonstein, S.D. Ehrlich, R. Overbeek, N. Kyrpides, Nature 423, 87–91 (2003)

    Article  Google Scholar 

  • J. Kim, D. Byun, M.G. Mauk, H.H. Bau, Lab Chip 9, 606–612 (2009)

    Article  Google Scholar 

  • C.G. Koh, W. Tan, M. Zhao, A.J. Ricco, Z.F. Hugh, Anal. Chem. 75, 4591–4598 (2003)

    Article  Google Scholar 

  • E.T. Lagally, C.A. Emrich, R.A. Mathies, Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis. Lab Chip 1, 102–107 (2001)

    Article  Google Scholar 

  • E.T. Lagally, J.R. Scherer, R.G. Blazerj, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley, R.A. Mathies, Anal. Chem. 76, 3162–3170 (2004)

    Article  Google Scholar 

  • L.A. Legendre, J.M. Bienvenue, M.G. Roper, J.P. Ferrance, J.P. Landers, A simple, valveless microfluidic sample preparation device for extraction and amplification of DNA from nanoliter-volume samples. Anal. Chem. 78, 1444–1451 (2006)

    Article  Google Scholar 

  • R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, Self-contained, fully integrated biochip for sample prepration, polymerase chain reaction, amplification, and DNA microarray detection. Anal. Chem. 76, 1824–1831 (2004)

    Article  Google Scholar 

  • C.C. Liu, X.B. Qiu, S. Ongagna, D.F. Chen, Z.Y. Chen, W.R. Abrams, D. Malamud, P.L.A.M. Corstjens, H.H. Bau, Lab Chip 9, 768–776 (2009)

    Article  Google Scholar 

  • M.G. Mauk, H.H. Bau, A.W. Dyson, S. Ramprasad, D. Chen, D. Byun, Reaction chamber having pre-stored reagents. US (2008)

  • N.L. Michael, S.A. Herman, S. Kwok, K. Dreyer, J. Wang, C. Christopherson, J.P. Spadoro, K.K.Y. Young, V. Polonis, F.E. McCutchan, J. Carr, J.R. Mascola, L.L. Jagodzinski, M.L. Robb, J. Clin. Microbiol. 37, 2557–2563 (1999)

    Google Scholar 

  • D.R. Murdoch, Molecular genetic methods in the diagnosis of lower respiratory tract infections. APMIS 112, 713–727 (2004)

    Article  Google Scholar 

  • P. Neuzil, C. Zhang, J. Pipper, S. Oh, L. Zhuo, Nucleic Acids Res. 34, e77 (2006)

    Article  Google Scholar 

  • B.L. Pasloske, C.R. Walkerpeach, R.D. Obermoeller, M. Winkler, D.B. DuBois, Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards. J. Clin. Microbiol. 36, 3590–3594 (1998)

    Google Scholar 

  • X. Qiu, J.A. Thompson, Z. Chen, C. Liu, D. Chen, S. Ramprasad, M.G. Mauk, S. Ongagna, C. Barber, W.R. Abrams, D. Malamud, P.L.A.M. Corstjens, H.H. Bau, Biomedical Microdevices, pp. doi 10.1007/s10544-009-9334-4 (2009)

  • M.D.L. Rey, J.C. May, Freeze-drying/lyophilization of pharmaceutical and biological products. (New York, 1999)

  • C.d.l. Rose, R. Prakash, P.A. Tilley, J.D. Fox, K.V.I.S. Kaler, Integrated microfluidic systems for sample preparation and detection of respiratory pathogen bordetell pertussis. Proceedings of IEEE EMBS, (2007)

  • D.J. Sadler, R. Changrani, P. Roberts, C.F. Chou, F. Zenhausern, Thermal management of BioMEMS: temperature control for ceramic-based PCR and DNA detection devices. IEEE Trans Compon Packag Technol 26, 309–316 (2003)

    Article  Google Scholar 

  • A.D. Stroock, S.K.W. Dertinger, A. Ajdari, I. Mezi, H.A. Stone, G.M. Whitesides, Chaotic mixer for microchannels. Science 295, 647–651 (2002)

    Article  Google Scholar 

  • F. van de Rijke, H. Zijlmans, S. Li, T. Vail, A.K. Raap, R.S. Niedbala, H.J. Tanke, Nat. Biotechnol. 19, 273–276 (2001)

    Article  Google Scholar 

  • J. Wang, Z. Chen, P.L.A.M. Corstjens, M.G. Mauk, H.H. Bau, Lab Chip 6, 46–53 (2006)

    Article  Google Scholar 

  • L.C. Waters, S.C. Jacobson, N. Kroutchinina, J. Khandurina, R.S. Foote, J.M. Ramsey, Anal. Chem. 70, 158–162 (1998)

    Article  Google Scholar 

  • B.H. Weigl, J. Gerdes, P. Tarr, P. Yager, L. Dillman, R. Peck, S. Ramachandran, M. Lemba, M. Kokoris, M. Nabavi, F. Battrell, D. Hoekstra, E.J. Klein, D.M. Denno, Proc. SPIE 6112, 1–11 (2006)

    Google Scholar 

  • P. Wilding, M.A. Shoffner, L.J. Kricka, Clin. Chem. 40, 1815–1818 (1994)

    Google Scholar 

  • A.T. Woollery, D. Hadley, P. Landre, A.J. deMello, R.A. Mathies, M.A. Northrup, Anal. Chem. 68, 4081–4086 (1996)

    Article  Google Scholar 

  • Q. Xiang, B. Xu, R. Fu, D. Li, Biomed. Microdevices 7, 273–279 (2005)

    Article  Google Scholar 

  • Q. Xiang, B. Xu, D. Li, Miniature real time PCR on chip with multi-channel fiber optical fluorescence detection module. Biomed. Microdevices 9, 443–449 (2007)

    Article  Google Scholar 

  • P. Yager, T. Edwards, K.H.E. Fu, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 412–418 (2006)

    Article  Google Scholar 

  • W.P. Yan, L.Q. Du, J. Wang, L.Z. Ma, J.B. Zhu, Simulation and experimental study of PCR chip based on silicon. Sens Actuators B Chem 108, 695–699 (2005)

    Article  Google Scholar 

  • J. Yang, Y. Liu, C. Rauch, R.L. Stevens, R.H. Liu, R. Lenigk, P. Grodzinski, Lab Chip 2, 179–187 (2002)

    Article  Google Scholar 

  • L. Yao, B. Liu, T. Chen, S. Liu, T. Zou, Biomed. Microdevices 7, 253–257 (2005)

    Article  Google Scholar 

  • J. Zhong, M. Yi, H.H. Bau, A thermal cycler fabricated with low temperature co-fired ceramic tapes. Presented at IMECE 1999, MEMS 1999 Symposium Proceedings, MEMS-Vol.1, Nashville, Nov 14–19, (1999)

Download references

Acknowledgments

The work was supported by NIH/NIDCR Grant U01DE017855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim H. Bau.

Electronic Supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(PDF 515 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Mauk, M., Qiu, X. et al. An integrated, self-contained microfluidic cassette for isolation, amplification, and detection of nucleic acids. Biomed Microdevices 12, 705–719 (2010). https://doi.org/10.1007/s10544-010-9423-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9423-4

Keywords

Navigation