Skip to main content
Log in

Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This report presents and describes a simple and scalable method for producing functional DNA microarrays within enclosed polymeric, PMMA, microfluidic devices. Brief (30 s) exposure to UV simultaneously immobilized poly(T)poly(C)-tagged DNA probes to the surface of unmodified PMMA and activated the surface for bonding below the glass transition temperature of the bulk PMMA. Functionality and validation of the enclosed PMMA microarrays was demonstrated as 18 patients were correctly genotyped for all eight mutation sites in the HBB gene interrogated. The fabrication process therefore produced probes with desired hybridization properties and sufficient bonding between PMMA layers to allow construction of microfluidic devices. The streamlined fabrication method is suited to the production of low-cost microfluidic microarray-based diagnostic devices and, as such, is equally applicable to the development of diagnostics for both resource rich and resource limited settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • N.B. Adey, M. Lei et al., Gains in sensitivity with a device that mixes microarray hybridization solution in a 25-mu m-thick chamber. Anal. Chem. 74(24), 6413–6417 (2002)

    Article  Google Scholar 

  • M.J. Banuls, V. Gonzalez-Pedro et al., PMMA isocyanate-modified digital discs as a support for oligonucleotide-based assays. Bioconjug. Chem. 18(5), 1408–1414 (2007)

    Article  Google Scholar 

  • H. Becker, L.E. Locascio, Polymer microfluidic devices. Talanta. 56(2), 267–287 (2002)

    Article  Google Scholar 

  • Y. Chen, L. Zhang et al., Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips. Electrophoresis. 29(9), 1801–1814 (2008)

    Article  Google Scholar 

  • A.G. Crevillen, M. Hervas et al., Real sample analysis on microfluidic devices. Talanta. 74(3), 342–357 (2007)

    Article  Google Scholar 

  • G.A. Diaz-Quijada, R. Peytavi et al., Surface modification of thermoplastics–towards the plastic biochip for high throughput screening devices. Lab. Chip. 7(7), 856–862 (2007)

    Article  Google Scholar 

  • M. Dufva, Fabrication of high quality microarrays. Biomol. Eng. 22(5–6), 173–184 (2005)

    Article  Google Scholar 

  • M. Dufva, S. Petronis et al., Characterization of an inexpensive, nontoxic, and highly sensitive microarray substrate. Biotechniques 37(2), 286–292 (2004). 294, 296

    Google Scholar 

  • M. Dufva, J. Petersen et al., Detection of mutations using microarrays of poly(C)10-poly(T)10 modified DNA probes immobilized on agarose films. Anal. Biochem. 352(2), 188–197 (2006)

    Article  Google Scholar 

  • M. Dufva, J. Petersen et al., Increasing the specificity and function of DNA microarrays by processing arrays at different stringencies. Anal. Bioanal. Chem. 395(3), 669–677 (2009)

    Article  Google Scholar 

  • F. Fixe, M. Dufva et al., One-step immobilization of aminated and thiolated DNA onto poly(methylmethacrylate) (PMMA) substrates. Lab. Chip. 4(3), 191–195 (2004a)

    Article  Google Scholar 

  • F. Fixe, M. Dufva et al., Functionalization of poly(methyl methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Res. 32(1), e9 (2004b)

    Article  Google Scholar 

  • H. Gudnason, M. Dufva et al., An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes. Biotechniques. 45(3), 261–271 (2008)

    Article  Google Scholar 

  • T. Kajiyama, Y. Miyahara et al., Genotyping on a thermal gradient DNA chip. Genome. Res. 13(3), 467–475 (2003)

    Article  Google Scholar 

  • M.G. Kattah, J. Coller et al., HIT: a versatile proteomics platform for multianalyte phenotyping of cytokines, intracellular proteins and surface molecules. Nat. Med. 14(11), 1284–1289 (2008)

    Article  Google Scholar 

  • G. Keramas, G. Perozziello et al., Development of a multiplex microarray microsystem. Lab. Chip. 4(2), 152–158 (2004)

    Article  Google Scholar 

  • N. Kimura, One-step immobilization of poly(dT)-modified DNA onto non-modified plastic substrates by UV irradiation for microarrays. Biochem. Biophys. Res. Commun. 347(2), 477–484 (2006)

    Article  Google Scholar 

  • I. Meyvantsson, J.W. Warrick et al., Automated cell culture in high density tubeless microfluidic device arrays. Lab. Chip. 8(5), 717–724 (2008)

    Article  Google Scholar 

  • J. Petersen, M. Stangegaard et al., Detection of mutations in the beta-globin gene by colorimetric staining of DNA microarrays visualized by a flatbed scanner. Anal. Biochem. 360(1), 169–171 (2007)

    Article  Google Scholar 

  • J. Petersen, L. Poulsen et al., Use of a multi-thermal washer for DNA microarrays simplifies probe design and gives robust genotyping assays. Nucleic Acids Res. 36(2), e10 (2008)

    Article  Google Scholar 

  • J. Petersen, L. Poulsen et al., Microfluidic Device for Creating Ionic Strength Gradients over DNA Microarrays for Efficient DNA Melting Studies and Assay Development. PLoS ONE. 4(3), e4808 (2009)

    Article  Google Scholar 

  • L. Poulsen, M.J. Soe et al., Multi-stringency wash of partially hybridized 60-mer probes reveals that the stringency along the probe decreases with distance from the microarray surface. Nucleic Acids Res. 36(20), e132 (2008)

    Article  Google Scholar 

  • H. Shinohara, J. Mizuno et al., Low-temperature direct bonding of poly(methyl methacrylate) for polymer microchips. Ieej Transactions on Electrical and Electronic Engineering. 2(3), 301–306 (2007)

    Article  Google Scholar 

  • C. Situma, Y. Wang et al., Fabrication of DNA microarrays onto poly(methyl methacrylate) with ultraviolet patterning and microfluidics for the detection of low-abundant point mutations. Anal. Biochem. 340(1), 123–135 (2005)

    Article  Google Scholar 

  • C. Situma, M. Hashimoto et al., Merging microfluidics with microarray-based bioassays. Biomol. Eng. 23(5), 213–231 (2006)

    Article  Google Scholar 

  • C. Situma, A.J. Moehring et al., Immobilized molecular beacons: a new strategy using UV-activated poly(methyl methacrylate) surfaces to provide large fluorescence sensitivities for reporting on molecular association events. Anal. Biochem. 363(1), 35–45 (2007)

    Article  Google Scholar 

  • S.A. Soper, M. Hashimoto et al., Fabrication of DNA microarrays onto polymer substrates using UV modification protocols with integration into microfluidic platforms for the sensing of low-abundant DNA point mutations. Methods. 37(1), 103–113 (2005)

    Article  Google Scholar 

  • M. Stangegaard, S. Petronis et al., A biocompatible micro cell culture chamber (microCCC) for the culturing and on-line monitoring of eukaryote cells. Lab. Chip. 6(8), 1045–1051 (2006)

    Article  Google Scholar 

  • R. Truckenmüller, P. Henzi et al., Bonding of polymer microstructures by UV irradiation and subsequent welding at low temperatures. Microsyst. Technol. 10, 372–374 (2004). doi:10.1007/s00542-004-0422-3

    Article  Google Scholar 

  • C.W. Tsao, D. Devoe, Bonding of thermoplastic polymer microfluidics. Microfluid. Nanofluid. 6, 1–16 (2009). doi:10.1007/s10404-008-0361-x

    Article  Google Scholar 

  • C.W. Tsao, L. Hromada et al., Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab. Chip. 7(4), 499–505 (2007)

    Article  Google Scholar 

  • A. Vainrub, B.M. Pettitt, Surface electrostatic effects in oligonucleotide microarrays: Control and optimization of binding thermodynamics. Biopolymers 68(2), 265–270 (2003)

    Article  Google Scholar 

  • E. Waddell, Y. Wang et al., High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes. Anal. Chem. 72(24), 5907–5917 (2000)

    Article  Google Scholar 

  • Y. Wang, B. Vaidya et al., Microarrays assembled in microfluidic chips fabricated from poly(methyl methacrylate) for the detection of low-abundant DNA mutations. Anal. Chem. 75(5), 1130–1140 (2003)

    Article  Google Scholar 

  • G.M. Whitesides, The origins and the future of microfluidics. Nature. 442(7101), 368–373 (2006)

    Article  Google Scholar 

  • P. Yager, G.J. Domingo et al., Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10, 107–144 (2008)

    Article  Google Scholar 

  • Z. Zhao, R. Peytavi et al., Plastic polymers for efficient DNA microarray hybridization: application to microbiological diagnostics. J. Clin. Microbiol. 46(11), 3752–3758 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from a DTU Ph. D. student grant and from the Copenhagen County Research Foundation, grant application Nr. 803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dufva.

Additional information

David Sabourin and Jesper Petersen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary information Table 1 (DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabourin, D., Petersen, J., Snakenborg, D. et al. Microfluidic DNA microarrays in PMMA chips: streamlined fabrication via simultaneous DNA immobilization and bonding activation by brief UV exposure. Biomed Microdevices 12, 673–681 (2010). https://doi.org/10.1007/s10544-010-9420-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-010-9420-7

Keywords

Navigation