Biomedical Microdevices

, Volume 12, Issue 3, pp 533–541 | Cite as

Droplet-based microsystem for multi-step bioreactions

Article

Abstract

A droplet-based microfluidic platform was used to perform on-chip droplet generation, merging and mixing for applications in multi-step reactions and assays. Submicroliter-sized droplets can be produced separately from three identical droplet-generation channels and merged together in a single chamber. Three different mixing strategies were used for mixing the merged droplet. For pure diffusion, the reagents were mixed in approximately 10 min. Using flow around the stationary droplet to induce circulatory flow within the droplet, the mixing time was decreased to approximately one minute. The shortest mixing time (10 s) was obtained with bidirectional droplet motion between the chamber and channel, and optimization could result in a total time of less than 1 s. We also tested this on-chip droplet generation and manipulation platform using a two-step thermal cycled bioreaction: nested TaqMan® PCR. With the same concentration of template DNA, the two-step reaction in a well-mixed merged droplet shows a cycle threshold of ∼6 cycles earlier than that in the diffusively mixed droplet, and ∼40 cycles earlier than the droplet-based regular (single-step) TaqMan® PCR.

Keywords

Droplet Microfluidics Merging Mixing Nested PCR 

Supplementary material

Movie 1

Droplet generation and merging (3× speed) (MPEG 7582 kb)

Movie 2

Mixing using flow around the stationary droplet in the chamber (2× speed) (MPEG 5056 kb)

Movie 3

Mixing using bidirectional droplet motion (2× speed) (MPEG 4538 kb)

References

  1. R. Ahmed, T.B. Jones, J. Electrost. 64, 543–549 (2006)CrossRefGoogle Scholar
  2. S.L. Anna, N. Bontoux, H.A. Stone, Appl. Phys. Lett. 82, 364–366 (2003)CrossRefGoogle Scholar
  3. V. Avettand-Fènoël, M.-L. Chaix, S. Blanche, M. Burgard, C. Floch, K. Toure, M.-C. Allemon, J. Warszawski, C. Rouzioux, J. Med, Virol. 81, 217–223 (2009)CrossRefGoogle Scholar
  4. N.R. Beer, B.J. Hindson, E.K. Wheeler, S.B. Hall, K.A. Rose, I.M. Kennedy, B.W. Colston, Anal. Chem. 79, 8471–8475 (2007)CrossRefGoogle Scholar
  5. N.R. Beer, E.K. Wheeler, L. Lee-Houghton, N. Watkins, S. Nasarabadi, N. Hebert, P. Leung, D.W. Arnold, C.G. Bailey, B.W. Colston, Anal. Chem. 80, 1854–1858 (2008)CrossRefGoogle Scholar
  6. M.R. Bringer, C.J. Gerdts, H. Song, J.D. Tice, R.F. Ismagilov, Phil. Trans. R. Soc. Lond. A 362, 1087–1104 (2004)CrossRefGoogle Scholar
  7. M. Chabert, J.-L. Viovy, Proc. Natl. Acad. Sci. 105, 3191–3196 (2008)CrossRefGoogle Scholar
  8. S.K. Cho, H. Moon, C.-J. Kim, J. Microelectromech, Syst. 12, 70–80 (2003)Google Scholar
  9. T. Franke, A.R. Abate, D.A. Weitz, A. Wixforth, Lab Chip 9, 2625–2627 (2009)CrossRefGoogle Scholar
  10. L. Frenz, A.E. Harrak, M. Pauly, S. Bégin-Colin, A.D. Griffiths, J.-C. Baret, Angew. Chem. Int. Ed. 47, 6817–6820 (2008)CrossRefGoogle Scholar
  11. Z. Guttenberg, H. Müller, H. Habermüller, A. Geisbauer, J. Pipper, J. Felbel, M. Kielpinski, J. Scriba, A. Wixforth, Lab Chip 5, 308–317 (2005)CrossRefGoogle Scholar
  12. K. Handique, M.A. Burns, J. Micromech. Microeng 11, 548–554 (2001)CrossRefGoogle Scholar
  13. A. Huebner, M. Srisa-Art, D. Holt, C. Abell, F. Hollfelder, A. J. deMello, J. B. Edel. Chem. Commun. 12, 1218–1220 (2007)CrossRefGoogle Scholar
  14. L.-H. Hung, K.M. Choi, W.-Y. Tseng, Y.-C. Tan, K.J. Shea, A.P. Lee, Lab Chip 6, 174–178 (2006)CrossRefGoogle Scholar
  15. T.B. Jones, J. Electrost. 51–52, 290–299 (2001)CrossRefGoogle Scholar
  16. S.-J. Kim, F. Wang, M.A. Burns, K. Kurabayashi, Anal. Chem. 81, 4510–4516 (2009)CrossRefGoogle Scholar
  17. P. Kumaresan, C.J. Yang, S.A. Cronier, R.G. Blazej, R.A. Mathies, Anal. Chem. 80, 3522–3529 (2008)CrossRefGoogle Scholar
  18. U. Lehmann, C. Vandevyver, V.K. Parashar, M.A.M. Gijs, Angew. Chem. Int. Ed. 45, 3062–3067 (2006)CrossRefGoogle Scholar
  19. D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Phys. Rev. Lett 92, 054503–1–054503–4 (2004)Google Scholar
  20. S. Mohr, Y.-H. Zhang, A. Macaskill, P.J.R. Day, R.W. Barber, N.J. Goddard, D.R. Emerson, P.R. Fielden, Microfluid Nanofluid 3, 611–621 (2007)CrossRefGoogle Scholar
  21. X. Niu, S. Gulati, J.B. Edel, A. J. deMello. Lab Chip 8, 1837–1841 (2008)CrossRefGoogle Scholar
  22. T. Ohashi, H. Kuyama, N. Hanafusa, Y. Togawa, Biomed Microdevices 9, 695–702 (2007)CrossRefGoogle Scholar
  23. P. Paik, V.K. Pamula, M.G. Pollack, R.B. Fair, Lab Chip 3, 28–33 (2003)CrossRefGoogle Scholar
  24. R. Pal, M. Yang, R. Lin, B.N. Johnson, N. Srivastava, S.Z. Razzacki, K.J. Chomistek, D. Heldsinger, R.M. Haque, V.M. Ugaz, P. Thwar, Z. Chen, K. Alfano, M. Yim, M. Krishnan, A.O. Fuller, R.G. Larson, D.T. Burke, M.A. Burns, Lab Chip 5, 1024–1032 (2005)CrossRefGoogle Scholar
  25. J. Pipper, M. Inoue, L.F.-P. Ng, P. Neuzil, Y. Zhang, L. Novak, Nat. Med. 13, 1259–1263 (2007)CrossRefGoogle Scholar
  26. M.G. Pollack, R.B. Fair, A.D. Shenderov, Appl. Phys. Lett. 77, 1725–1726 (2000)CrossRefGoogle Scholar
  27. M.G. Pollack, A.D. Shenderov, R.B. Fair, Lab Chip 2, 96–101 (2002)CrossRefGoogle Scholar
  28. M. Rhee, M.A. Burns, Langmuir 24, 590–601 (2008)CrossRefGoogle Scholar
  29. F. Sarrazin, L. Prat, N.D. Miceli, G. Cristobal, D.R. Link, D.A. Weitz, Chem. Eng. Sci. 62, 1042–1048 (2007)CrossRefGoogle Scholar
  30. Y. Schaerli, R.C. Wootton, T. Robinson, V. Stein, C. Dunsby, M.A.A. Neil, P.M.W. French, A. J. deMello, C. Abell, F. Hollfelder. Anal. Chem. 81, 302–306 (2009)CrossRefGoogle Scholar
  31. I. Shestopalov, J.D. Tice, R.F. Ismagilov, Lab Chip 4, 316–321 (2004)CrossRefGoogle Scholar
  32. S. Sivapalasingam, U. Patel, V. Itri, M. Laverty, K. Mandaliya, F. Valentine, S. Essajee, J. Trop, Pediatrics 53, 355–358 (2007)Google Scholar
  33. H. Song, M.R. Bringer, J.D. Tice, C.J. Gerdts, Appl. Phys. Lett. 83, 4664–4666 (2003)CrossRefGoogle Scholar
  34. V. Srinivasan, V.K. Pamula, R.B. Fair, Lab Chip 4, 310–315 (2004)CrossRefGoogle Scholar
  35. M. Srisa-Art, A. J. deMello, J. B. Edel. Anal. Chem. 79, 6682–6689 (2007)CrossRefGoogle Scholar
  36. Y.-C. Tan, J.S. Fisher, A.L. Lee, V. Cristini, A.P. Lee, Lab Chip 4, 292–298 (2004)Google Scholar
  37. Y.-C. Tan, Y.L. Ho, A.P. Lee, Microfluid Nanofluid 3, 495–499 (2007)CrossRefGoogle Scholar
  38. T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Phys. Rev. Lett. 86, 4163–4166 (2001)CrossRefGoogle Scholar
  39. T.H. Ting, Y.F. Yap, N.-T. Nguyen, T.N. Wong, J.C.K. Chai, L. Yobas, Appl. Phys. Lett. 89, 234101–234103 (2006)CrossRefGoogle Scholar
  40. E. Um, J.-K. Park, Lab Chip 9, 207–212 (2009)CrossRefGoogle Scholar
  41. F. Wang, M.A. Burns, Biomed Microdevices 11, 1071–1080 (2009)CrossRefGoogle Scholar
  42. B. Zheng, J.D. Tice, S. Roach, R.F. Ismagilov, Angew. Chem. Int. Ed. 43, 2508–2511 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations