Biomedical Microdevices

, Volume 12, Issue 3, pp 513–521 | Cite as

Microfluidic devices for characterizing the agonist of formyl peptide receptor in RBL-FPR cells

Article

Abstract

The human formyl peptide receptor (FPR) plays an important role in inflammation and immunity. Finding of specific agonists and antagonists of FPR may provide potential therapeutic agents for FPR related disorders. The binding of agonist by FPR induces a cascade of G protein-mediated signaling events leading to neutrophil chemotaxis, intracellualr calcium mobilization, FPR ligand uptake and so on. This work proposed a microfluidic-based method to characterize FPR-related cellular events in response to small peptides, N-formyl-Met-Leu-Phe (fMLF), in rat basophilic leukemia cell line RBL-2H3 expressing human FPR (RBL-FPR). The results showed that fMLF triggered chemotaxis, calcium mobilization and FPR ligand uptake in RBL-FPR cells, indicating the potential role of FPR agonist. The chemotaxis index and the calcium mobilization intensity increased but the time course of calcium mobilization decreased, as the rising of fMLF concentration. The basic agreement between the microfluidic results and the previous studies demonstrated good feasibility of the microfluidic method for characterization of FPR agonist. Microfluidic technology displays significant advantages over traditional methods in terms of sample consumption and assay time. It also facilitates experimental process and real-time observation of cellular responses at single cell resolution.

Keywords

Microfluidic Formyl peptide receptor Chemotaxis Calcium mobilization FPR ligand uptake 

Supplementary material

Supplementary material

Movie: The course of calcium mobilization in RBL-FPR cells induced by 40 nM fMLF. (MPG 32 kb)

References

  1. V.V. Abhyankar, M.W. Toepke, C.L. Cortesio, M.A. Lokuta, A. Huttenlocher, D.J. Beebe, Lab Chip 8, 1507 (2008)CrossRefGoogle Scholar
  2. D.J. Bharali, D.W. Lucey, H. Jayakumar, H.E. Pudavar, P.N. Prasad, J. Am. Chem. Soc. 127, 11364 (2005)CrossRefGoogle Scholar
  3. G.M. Bokoch, Blood 86, 1649 (1995)Google Scholar
  4. S.E. Van Compernolle, K.L. Clark, K.A. Rummel, S.C. Todd, J. Immunol. 171, 2050 (2003)Google Scholar
  5. A.J.L. Cooper, B.S. Kristal, Biol. Chem. 378, 793–802 (1997)Google Scholar
  6. Y.H. Cui, Y.Y. Le, H. Yazawa, W.H. Gong, J.M. Wang, J. Leukocyte. Bio. 72, 628 (2002)Google Scholar
  7. K. Davison, S. Cote, S. Mader, W.H. Miller, Leukemia 17, 931–940 (2003)CrossRefGoogle Scholar
  8. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)CrossRefGoogle Scholar
  9. R. Gomez-Sjoberg, A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake, Anal. Chem. 79, 8557 (2007)CrossRefGoogle Scholar
  10. R. He, L. Tan, D.D. Browning, J.M. Wang, R.D. Ye, J. Immunol. 165, 4598 (2000)Google Scholar
  11. Y.Y. Le, J.Y. Hu, W.H. Gong, W.P. Shen, B.Q. Li, N.M. Dunlop, D.O. Halverson, D.G. Blair, J.M. Wang, J. Neuroimmunol. 111, 102 (2000)CrossRefGoogle Scholar
  12. Y.Y. Le, P.M. Murphy, J.M. Wang, Trends Immunol. 23, 541 (2002)CrossRefGoogle Scholar
  13. Y.Y. Le, H. Yazawa, W.H. Gong, Z.X. Yu, V.J. Ferrans, P.M. Murphy, J.M. Wang, J. Immunol. 166, 1448 (2001)Google Scholar
  14. B.Q. Li, M.A. Wetzel, J.A. Mikovits, E.E. Henderson, T.J. Rogers, W.H. Gong, Y.Y. Li, F.W. Ruscetti, J.M. Wang, Blood 97, 2941 (2001)CrossRefGoogle Scholar
  15. F. Lin, E.C. Butcher, Lab Chip 6, 1462 (2006)CrossRefGoogle Scholar
  16. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435 (2005)CrossRefGoogle Scholar
  17. X. Michalet, F.F. Pinaud, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Sundaresan, A.M. Wu, S.S. Gambhir, S. Weiss, Science 307, 538 (2005)CrossRefGoogle Scholar
  18. J.S. Mills, Biochim. Biophys. Acta, Mol. Basis Dis. 1762, 693 (2006)Google Scholar
  19. P.M. Murphy, T. Ozcelik, R.T. Kenney, H.L. Tiffany, D. McDermott, U. Francke, J. Biol. Chem. 267, 7637 (1992)Google Scholar
  20. E.R. Prossnitz, R.D. Ye, Pharmacol. Ther. 74, 73 (1997)CrossRefGoogle Scholar
  21. J.H. Qin, N.N. Ye, X. Liu, B.C. Lin, Electrophoresis 26, 3780 (2005a)CrossRefGoogle Scholar
  22. J.H. Qin, N.N. Ye, L.F. Yu, D.Y. Liu, Y.S. Fung, W. Wang, X.J. Ma, B.C. Lin, Electrophoresis 26, 1155 (2005b)CrossRefGoogle Scholar
  23. M. Rabiet, E. Huet, F. Boulay, Biochemie 89, 1089 (2007)CrossRefGoogle Scholar
  24. S.B. Su, W.H. Gong, J.L. Gao, W.P. Shen, M.C. Grimm, X.Y. Deng, P.M. Murphy, J.J. Oppenheim, J.M. Wang, Blood 93, 3885 (1999)Google Scholar
  25. H.X. Wan, C. Zhou, Y. Zhang, M. Sun, X. Wan, H. Yu, X. Yang, R.D. Ye, J.K. Shen, M.W. Wang, Inflamm. Res. 56, S476 (2007)Google Scholar
  26. P. Yan, M. Nanamori, M. Sun, C. Zhou, N. Cheng, N. Li, W. Zheng, L. Xiao, X. Xie, R.D. Ye, M. Wang, J. Immunol. 177, 7050 (2006)Google Scholar
  27. R.D. Ye, S.L. Cavanagh, O. Quehenberger, E.R. Prossnitz, C.G. Cochrane, Biochem. Biophys. Res. Commun. 184, 582 (1992)CrossRefGoogle Scholar
  28. N.N. Ye, J.H. Qin, W.W. Shi, X. Liu, B.C. Lin, Lab Chip 7, 1696 (2007a)CrossRefGoogle Scholar
  29. N.N. Ye, J.H. Qin, W.W. Shi, B.C. Lin, Electrophoresis 28, 1146 (2007b)CrossRefGoogle Scholar
  30. B. B. Zhang, X. Q. Gong, L. J. Hao, J. Cheng, Y. Han and J. Chang, Nanotechnology, 19, (2008)Google Scholar
  31. M. Zhou, E. Nakatani, L.S. Gronenberg, T. Tokimoto, M.J. Wirth, V.J. Hruby, A. Roberts, R.M. Lynch, I. Ghosh, Bioconjug. Chem. 18, 323 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Biotechnology, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.The National Center for Drug ScreeningShanghaiChina

Personalised recommendations