Biomedical Microdevices

, Volume 12, Issue 3, pp 499–503 | Cite as

An automatic microturbidostat for bacterial culture at constant density

Article

Abstract

We have developed a microturbidostat for long time bacterial culture at constant density controlled by optical detection and integrated pneumatic valves. The device was fabricated by multilayer soft lithography and in-situ formation of an agarose filter. The culture chamber of bacteria was connected in one side to a single bacterial input-output channel and in another side to a nutrient channel in which the agarose filter was formed to ensure the diffusion of nutrients and metabolites without bacterial loss. The bacterial number in the culture chamber was determined by measuring the fluorescence intensity of GFP proteins of the bacteria and the redundant bacteria could be exported automatically through the input-output channel with integrated micro-valves. In order to optimize the operation performance, we investigated the bacterial exportation efficiency with different input-output channel widths. As expected, the bacterial sorting coefficient was proportional to the input-output channel width. The results also showed that with a 20 µm channel-width, a long time culture was possible with a constant bacterial number in the chamber in the range from 400 to 700.

Keywords

Microfluidics Microturbidostat Bacterial growth 

References

  1. A. Akgun, Ph.D thesis, RETH Achen University (2007)Google Scholar
  2. F.K. Balagadde, L. You, C.L. Hansen, F.H. Arnold, S.R. Quake, Science 309, 137–140 (2005)CrossRefGoogle Scholar
  3. D.J. Beebe, J.S. Moore, J.M. Bauer, Q. Yu, R.H. Liu, C. Devadoss, B.H. Jo, Nature 404, 588–590 (2000)CrossRefGoogle Scholar
  4. P.H. Calcott, Genetic studies using continuous culture, In P.H. Calcott (ed), Continuous culture of cells (CRC Press, Boca Raton, 1981), pp. 127–140Google Scholar
  5. S.Y. Cheng, S. Heilman, M. Wasserman, S. Archer, M.L. Shuler, M.M. Wu, Lab chip 7, 763–769 (2007)CrossRefGoogle Scholar
  6. A. Groisman, C. Lobo, H. Cho, J.K. Campbell, Y.S. Dufour, A.M. Stevens, A Levchenko. Nat. Methods 2, 685–689 (2005)CrossRefGoogle Scholar
  7. D. Kim, D.J. Beebe, Lab chip 7, 193–198 (2007)CrossRefGoogle Scholar
  8. P.J. Lee, P.J. Hung, V.M. Rao, L.P. Lee, Biotechnol. Bioeng. 94, 5–14 (2006)CrossRefGoogle Scholar
  9. C.X. Luo, X.J. Zhu, T. Yu, X.J. Luo, Q. Ouyang, H. Ji, Y. Chen, Biotechnol Bioeng 101, 190–195 (2008)CrossRefGoogle Scholar
  10. G.A. Martin, W.P. Hempfling, Arch Microbiol 107, 41–47 (1976)CrossRefGoogle Scholar
  11. M.M. Maharbiz, W.J. Holtz, R.T. Howe, J.D. Keasling, Biotechnol. Bioeng. 85, 376–382 (2004)CrossRefGoogle Scholar
  12. A. Novick, L. Szilard, Science 112, 715–716 (1950)CrossRefGoogle Scholar
  13. R. Puskeiler, K. Kaufmann, D. Weuster-Botz, Biotechnol. Bioeng. 89, 512–523 (2005a)CrossRefGoogle Scholar
  14. R. Puskeiler, A. Kusterer, G.T. John, D. Weuster-Botz, Biotechnol. Appl. Biochem. 42, 227–235 (2005b)CrossRefGoogle Scholar
  15. M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Science 288(5463), 113–116 (2000)CrossRefGoogle Scholar
  16. D. Weuster-Botz, R. Puskeiler, A. Kusterer, K. Kaufmann, G.T. John, M. Arnold, Bioprocess Biosyst. Eng. 28, 109–119 (2005)CrossRefGoogle Scholar
  17. H.K. Wu, B. Huang, R.N. Zare, J. Am, Chem. Soc. 128, 4194–4195 (2006)CrossRefGoogle Scholar
  18. A. Zanzotto, N. Szita, P. Boccazzi, P. Lessard, A.J. Sinskey, K.F. Jensen, Biotechnol. Bioeng. 87, 243–354 (2004)CrossRefGoogle Scholar
  19. Z.Y. Zhang, N. Szita, P. Boccazzi, A.J. Sinskey, K.F. Jensen, Biotechnol. Bioeng. 93, 286–296 (2005)CrossRefGoogle Scholar
  20. Z.Y. Zhang, P. Boccazzi, H.G. Choi, G. Perozziello, A.J. Sinskey, K.F. Jensen, Lab chip 6, 906–913 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Center for Microfluidics and Nanotechnology and School of Physics, The State Key Laboratory for Artificial Microstructures and Mesoscopic PhysicsPeking UniversityBeijingChina
  2. 2.Ecole Normale SuperieureCNRS-ENS-UPMC UMR 8640ParisFrance
  3. 3.Center for Theoretical Biology, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina

Personalised recommendations