Biomedical Microdevices

, Volume 12, Issue 3, pp 465–475 | Cite as

Spontaneous formation of stably-attached and 3D-organized hepatocyte aggregates on oxygen-permeable polydimethylsiloxane membranes having 3D microstructures

Article

Abstract

In order to enhance the viability and the differentiated functions of primary hepatocytes in cultures, it appears important to have them organized within a three-dimensional (3D) structure which promotes extensive cell-cell contacts, but also to be adequately supplied with oxygen. Here, we report a simple methodology satisfying these two fundamental but sometimes conflicting issues: primary rat hepatocytes were cultured on polydimethylsiloxane (PDMS) membranes with 3D-pillared microstructures with various dimensions, so that the cells could organize themselves around the pillars into various kinds of 3D multicellular aggregates, while being continuously supplied with oxygen by diffusion through the PDMS membrane. As expected, under such conditions, hepatocyte cultures exhibited higher albumin secretion and urea synthesis rates. It appeared then that as the spacing decreased between the pillars, the cells were more stably organized into smaller spherical aggregates and displayed the highest albumin secretion rates. Such a simple design is likely to be included in a new drug/chemical screening system in a practical microplate format, but also appears applicable to microfluidic devices.

Keywords

Rat hepatocyte Oxygen supply PDMS membrane 3D structure 3D aggregate 

References

  1. J.P. Camp, A.T. Capitano, Biotechnol. Prog. 23, 1485 (2007)CrossRefGoogle Scholar
  2. S.G. Charati, S.A. Stern, Macromolecules 31, 5529 (1998)CrossRefGoogle Scholar
  3. D.F. Clayton, A.L. Harrelson, J.E. Darnell, Mol. Cell. Biol. 5, 2623 (1985)Google Scholar
  4. M. Dvir-Ginzberg, T. Elkayam, E.D. Aflalo, R. Agbaria, S. Cohen, Tissue Eng. 10, 1806 (2004)CrossRefGoogle Scholar
  5. F. Evenou, T. Fujii, Y. Sakai, Tissue Eng. PartC-Me., ahead of print. (2010). doi:10.1089/ten.TEC.2009.0042
  6. J. Fukuda, K. Nakazawa, Tissue Eng. 11, 1254 (2005)CrossRefGoogle Scholar
  7. J. Fukuda, A. Khademhosseini, Y. Yeo, X. Yang, J. Yeh, G. Eng, J. Blumling, C.F. Wang, D.S. Kohane, R. Langer, Biomaterials 27, 5259 (2006)CrossRefGoogle Scholar
  8. R. Glicklis, J.C. Merchuk, S. Cohen, Biotechnol. Bioeng. 86, 672 (2004)CrossRefGoogle Scholar
  9. L.K. Hansen, C.C. Hsiao, J.R. Friend, F.J. Wu, G.A. Bridge, R.P. Remmel, F.B. Cerra, W.S. Hu, Tissue Eng. 4, 65 (1998)CrossRefGoogle Scholar
  10. H. Ijima, T. Matsushita, K. Nakazawa, Y. Fujii, K. Funatsu, Tissue Eng. 4, 213 (1998)CrossRefGoogle Scholar
  11. N. Koide, T. Shinji, T. Tanabe, K. Asano, M. Kawaguchi, K. Sakaguchi, Y. Koide, M. Mori, T. Tsuji, Biochem. Biophys. Res. Commun. 161, 385 (1989)CrossRefGoogle Scholar
  12. N. Koide, K. Sakaguchi, Y. Koide, K. Asano, M. Kawaguchi, H. Matsushima, T. Takenami, T. Shinji, M. Mori, T. Tsuji, Exp. Cell Res. 186, 227 (1990)CrossRefGoogle Scholar
  13. J. Landry, D. Bernier, C. Ouellet, R. Goyette, N.J. Marceau, Cell Biol. 101, 914 (1985)CrossRefGoogle Scholar
  14. E. Leclerc, Y. Sakai, T. Fujii, Biomed. Microdevices 5, 109 (2003)CrossRefGoogle Scholar
  15. E. Leclerc, Y. Sakai, T. Fujii, Biotechnol. Prog. 20, 750 (2004)CrossRefGoogle Scholar
  16. H.F. Lu, K.N. Chua, P.C. Zhang, W.S. Lim, S. Ramakrishna, K.W. Leong, H.Q. Mao, Acta Biomaterialia 1, 399 (2005)CrossRefGoogle Scholar
  17. Y. Martin, P. Vermette, Biomaterials 26, 7481 (2005)CrossRefGoogle Scholar
  18. G. Mehta, K. Mehta, D. Sud, J.W. Song, T. Bersano-Begey, N. Futai, Y.S. Heo, M.A. Mycek, J.J. Linderman, S. Takayama, Biomed. Microdevices 9, 123 (2007)CrossRefGoogle Scholar
  19. T.C. Merkel, V.I. Bondar, K. Nagai, B.D. Freeman, I. Pinnau, J. Polym, Sci B: Polym. Phys. 38, 415 (2000)CrossRefGoogle Scholar
  20. E. Metzen, M. Wolff, J. Fandrey, W. Jelkmann, Respir. Physiol. 100, 101 (1995)CrossRefGoogle Scholar
  21. Y. Nahmias, Y. Kramvis, L. Barbe, M. Casali, F. Berthiaume, M.L. Yarmush, FASEB J. 20, 2531 (2006)CrossRefGoogle Scholar
  22. K. Nakazawa, Y. Izumi, J. Fukuda, T. Yasuda, J. Biomater. Sci. Polymer Edn. 17, 859 (2006)CrossRefGoogle Scholar
  23. K. Nakazawa, Y. Izumi, R. Mori, Acta Biomaterialia 5, 613 (2009)CrossRefGoogle Scholar
  24. M. Nishikawa, T. Yamamoto, N. Kojima, K. Komori, T. Fujii, Y. Sakai, Biotechnol. Bioeng. 99, 1472 (2008a)CrossRefGoogle Scholar
  25. M. Nishikawa, N. Kojima, K. Komori, T. Yamamoto, T. Fujii, Y. Sakai, J. Biotechnol. 133, 253 (2008b)CrossRefGoogle Scholar
  26. S. Ostrovidov, J.L. Jiang, Y. Sakai, T. Fujii, Biomed. Microdevices 6, 279 (2004)CrossRefGoogle Scholar
  27. M.V. Peshwa, F.J. Wu, B.D. Follstad, F.B. Cerra, W.S. Hu, Biotechnol. Prog. 10, 460 (1994)CrossRefGoogle Scholar
  28. A. Rotem, M. Toner, R.G. Tompkins, M.L. Yarmush, Biotechnol. Bioeng. 40, 1286 (1992)CrossRefGoogle Scholar
  29. A. Rotem, M. Toner, S. Bhatia, B.D. Foy, R.G. Tompkins, M.L. Yarmush, Biotechnol. Bioeng. 43, 654 (1994)CrossRefGoogle Scholar
  30. Y. Sakai, M. Suzuki, Biotechnol. Tech. 5, 299 (1991)CrossRefGoogle Scholar
  31. Y. Sakai, K. Furukawa, M. Suzuki, Biotechnol. Tech. 6, 527 (1992)CrossRefGoogle Scholar
  32. P.O. Seglen, Methods Cell Biol. 13, 29 (1976)CrossRefGoogle Scholar
  33. H. Shiku, T. Saito, C.-C. Wu, T. Yasukawa, M. Yokoo, H. Abe, T. Matsue, H. Yamada, Chem. Lett. 35, 234 (2006)CrossRefGoogle Scholar
  34. A.J. Strain, J.M. Neuberger, Science 295, 1005 (2002)CrossRefGoogle Scholar
  35. A.W. Tilles, H. Baskaran, P. Roy, M.L. Yarmush, M. Toner, Biotechnol. Bioeng. 73, 379 (2001)CrossRefGoogle Scholar
  36. E.S. Tzanakakis, L.K. Hansen, W.S. Hu, Cell Motil. Cytoskeleton 48, 175 (2001)CrossRefGoogle Scholar
  37. F.J. Wu, J.R. Friend, C.C. Hsiao, M.J. Zilliox, W.J. Ko, F.B. Cerra, W.S. Hu, Biotechnol. Bioeng. 50, 404 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Laboratory for Integrated Micro-Mechatronic Systems (LIMMS/CNRS-IIS), Institute of Industrial ScienceUniversity of TokyoMeguro-kuJapan
  2. 2.Institute of Industrial Science (IIS)University of TokyoMeguro-kuJapan

Personalised recommendations