Biomedical Microdevices

, Volume 12, Issue 3, pp 457–464 | Cite as

Micropatterned assembly of silica nanoparticles for a protein microarray with enhanced detection sensitivity

Article

Abstract

We used an assembly of silica nanoparticles (SNPs) as a three-dimensional template for protein immobilization to prepare a protein microarray with enhanced protein loading capacity and detection sensitivity. SNPs were first modified with 3-aminopropyltriethoxysilane (APTES) for covalent immobilization of protein and micropatterned on poly(ethylene glycol)(PEG)-coated glass slides using elastomeric membranes with an array of holes. Proteins were selectively immobilized only on the SNP region, while the PEG regions served as an effective barrier to protein adsorption. Because of multi-layered SNPs that had curved surface, protein loading in the SNP micropattern was about six times greater than on a planar surface, as observed by fluorescence microscopy, which consequently improved the protein activity and reaction rate. GOX-catalyzed glucose oxidation and the molecular recognition mediated, specific binding between biotin and streptavidin were both successfully assayed using SNP microarrays, with better fluorescence signal and sensitivity than corresponding planar microarrays.

Keywords

Silica nanoparticles Elastomeric membranes Protein microarray Three-dimensional template Micropatterning 

References

  1. P. Angenendt, Progress in protein and antibody microarray technology. Drug Discov. Today 10, 503–511 (2005)CrossRefGoogle Scholar
  2. P. Arenkov, A. Kukhtin, A. Gemmell, S. Voloshchuk, V. Chupeeva, A. Mirzabekov, Protein microchips: Use for immunoassay and enzymatic reactions. Anal. Biochem. 278, 123–131 (2000)CrossRefGoogle Scholar
  3. M.Y. Balakirev, S. Porte, M. Vernaz-Gris, M. Berger, J.P. Arie, B. Fouque, F. Chatelain, Photochemical patterning of biological molecules inside a glass capillary. Anal. Chem. 77, 5474–5479 (2005)CrossRefGoogle Scholar
  4. I. Barbulovic-Nad, M. Lucente, Y. Sun, M.J. Zhang, A.R. Wheeler, M. Bussmann, Bio-microarray fabrication techniques—a review. Crit. Rev. Biotechnol. 26, 237–259 (2006)CrossRefGoogle Scholar
  5. D.H. Blohm, A. Guiseppi-Elie, New developments in microarray technology. Curr. Opin. Biotechnol. 12, 41–47 (2001)CrossRefGoogle Scholar
  6. K.M. Chen, X.P. Jiang, L.C. Kimerling, P.T. Hammond, Selective self-organization of colloids on patterned polyelectrolyte templates. Langmuir 16, 7825–7834 (2000)CrossRefGoogle Scholar
  7. E. Delamarche, A. Bernard, H. Schmid, A. Bietsch, B. Michel, H. Biebuyck, Microfluidic networks for chemical patterning of substrate: Design and application to bioassays. J. Am. Chem. Soc. 120, 500–508 (1998)CrossRefGoogle Scholar
  8. D.C. Duffy, R.J. Jackman, K.M. Vaeth, K.F. Jensen, G.M. Whitesides, Patterning electroluminescent materials with feature sizes as small as 5 μm using elastomeric membranes as masks for dry lift-off. Adv Mater 11, 546–552 (1999)CrossRefGoogle Scholar
  9. D.S. Ginger, H. Zhang, C.A. Mirkin, The evolution of dip-pen nanolithography. Angew. Chem. Int. Ed. 43, 30–45 (2004)CrossRefGoogle Scholar
  10. J. Glokler, P. Angenendt, Protein and antibody microarray technology. J. Chromatogr. B 797, 229–240 (2003)CrossRefGoogle Scholar
  11. M. Hartmann, J. Roeraade, D. Stoll, M. Templin, T. Joos, Protein microarrays for diagnostic assays. Anal. Bioanal. Chem. 393, 1407–1416 (2009)CrossRefGoogle Scholar
  12. J. Heo, R.M. Crooks, Microfluidic biosensor based on an array of hydrogel-entrapped enzymes. Anal. Chem. 77, 6843–6851 (2005)CrossRefGoogle Scholar
  13. D.N. Howbrook, A.M. van der Valk, M.C. O’Shaughnessy, D.K. Sarker, S.C. Baker, A.W. Lloyd, Developments in microarray technologies. Drug Discov. Today 8, 642–651 (2003)CrossRefGoogle Scholar
  14. R.S. Kane, S. Takayama, E. Ostuni, D.E. Ingber, G.M. Whitesides, Patterning proteins and cells using soft lithography. Biomaterials 20, 2363–2376 (1999)CrossRefGoogle Scholar
  15. B. Kersten, A. Possling, F. Blaesing, E. Mirgorodskaya, J. Gobom, H. Seitz, Protein microarray technology and ultraviolet crosslinking combined with mass spectrometry for the analysis of protein-DNA interactions. Anal. Biochem. 331, 303–313 (2004)CrossRefGoogle Scholar
  16. G. Macbeath, S.I. Shreiber, Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000)Google Scholar
  17. P. Maury, M. Escalante, D.N. Reinhoudt, J. Huskens, Directed assembly of nanoparticles onto polymer-imprinted or chemically patterned templates fabricated by nanoimprint lithography. Adv. Mater. 17, 2718–2723 (2005)CrossRefGoogle Scholar
  18. P. Mitchell, A perspective on protein microarrays. Nat. Biotechnol. 20, 225–229 (2002)CrossRefGoogle Scholar
  19. D. Nagao, R. Kameyama, Y. Kobayashi, M. Konno, Multiformity of particle arrays assembled with a simple dip-coating. Colloids Surf., A Physicochem. Eng. Asp 311, 26–31 (2007)CrossRefGoogle Scholar
  20. E. Ostuni, R. Kane, C.S. Chen, D.E. Ingber, G.M. Whitesides, Patterning mammalian cells using elastomeric membranes. Langmuir 16, 7811–7819 (2000)CrossRefGoogle Scholar
  21. A. Papra, N. Gadegaard, N.B. Larsen, Characterization of ultrathin poly(ethylene glycol) monolayers on silicon substrates. Langmuir 17, 1457–1460 (2001)CrossRefGoogle Scholar
  22. J. Park, J. Moon, Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing. Langmuir 22, 3506–3513 (2006)CrossRefGoogle Scholar
  23. E.E. Ross, M.J. Wirth, Silica colloidal crystals as three-dimensional scaffolds for supported lipid films. Langmuir 24, 1629–1634 (2008)CrossRefGoogle Scholar
  24. A.Y. Rubina, E.I. Dementieva, A.A. Stomakhin, E.L. Darii, S.V. Pan’kov, V.E. Barsky, S.M. Ivanov, E.V. Konovalova, A.D. Mirzabekov, Hydrogel-based protein microchips: Manufacturing, properties, and applications. Biotechniques 34, 1008–1022 (2003)Google Scholar
  25. W. Stöber, A. Fink, E. Bhon, Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968)CrossRefGoogle Scholar
  26. M. Tyers, M. Mann, From genomics to proteomics. Nature 422, 193–197 (2003)CrossRefGoogle Scholar
  27. C. Wang, Y. Zhang, H.S. Seng, L.L. Ngo, Nanoparticle-assisted micropatterning of active proteins on solid substrate. Biosens. Bioelectron. 21, 1638–1643 (2006)CrossRefGoogle Scholar
  28. D.S. Wilson, S. Nock, Recent development in protein microarray technology. Angew. Chem. Int. Ed. 42, 494–500 (2003)CrossRefGoogle Scholar
  29. X. Yan, J.M. Yao, G.A. Lu, X. Chen, K. Zhang, B. Yang, Microcontact printing of colloidal crystals. J. Am. Chem. Soc. 126, 10510–10511 (2004)CrossRefGoogle Scholar
  30. Z.J. Yang, Z.Y. Xie, H. Liu, F. Yan, H.X. Ju, Streptavidin-functionalized three-dimensional ordered nanoporous silica film for highly efficient chemiluminescent immunosensing. Adv. Funct. Mater. 18, 3991–3998 (2008)CrossRefGoogle Scholar
  31. F.L. Yap, Y. Zhang, Protein and cell micropatterning and its integration with micro/nanoparticles assembly. Biosens. Bioelectron. 22, 775–788 (2007)CrossRefGoogle Scholar
  32. Y. Zhang, Micropatterning of proteins on nanospheres. Colloids Surf., B Biointerfaces 48, 95–100 (2006)CrossRefGoogle Scholar
  33. Y. Zhang, C. Wang, Micropatterning of proteins on 3d porous polymer films fabricated by using the breath-figure method. Adv Mater 19, 913–916 (2007)CrossRefGoogle Scholar
  34. H. Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P. Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T. Mitchell, P. Miller, R.A. Dean, M. Gerstein, M. Snyder, Global analysis of protein activities using proteome chips. Science 293, 2101–2105 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yeol Lee
    • 1
  • Sangphil Park
    • 1
  • Jinwon Park
    • 1
  • Won-Gun Koh
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulRepublic of Korea

Personalised recommendations