Biomedical Microdevices

, Volume 12, Issue 3, pp 435–442 | Cite as

Development of a protein sensing device utilizing interactions between polyaniline and a polymer acid dopant

  • Carolyn L. Bayer
  • Alper A. Konuk
  • Nicholas A. Peppas
Article

Abstract

Human disease processes are often characterized by a deviation from the normal physiological concentration of critical biomarkers. The detection of disease biomarkers requires the development of novel sensing methods which are sensitive, specific, efficient and low-cost. To address this need, the ability of a device, which incorporates a film of polymer acid doped polyaniline, to respond to proteins at physiological pH and ionic strength was assessed. The conductive polymer was found to respond by changing conductivity in the presence of biomolecules, demonstrating a direct chemical to electronic transduction method. In future work, specificity can be incorporated into the system by integrating the conductive polymer with a protein selective film. The demonstration of a conductive polymer which is responsive to proteins at physiological conditions is a step towards the integration of these materials into implantable sensing systems.

Keywords

Conductive polymers Polyaniline Biosensor Bovine serum albumin Lysozyme 

Abbreviations

PANI

polyaniline

PAAMPSA

poly(2-acrylamido-2-methylpropanesulfonic acid)

Lys

lysozyme

BSA

bovine serum albumin

APTS

aminopropyltrimethoxysilane

APS

ammonium persulfate

PBS

phosphate buffered solution

NaCl

sodium chloride

References

  1. H. Bai, G. Shi, Sensors. (2007). doi:10.3390/s7030267
  2. C.L. Bayer, I.J. Trenchard, N.A. Peppas, J. Biomater. Sci., Polym. Ed., in pressGoogle Scholar
  3. D.G. Buerk, Biosensors, Theory and Applications (Technomic, Lancaster, 1993)Google Scholar
  4. J.-C. Chiang, A.G. MacDiarmid, Synth. Met. (1986). doi:10.1016/0379-6779(86)90070-6
  5. B. Deore, Z. Chen, T. Nagaoka, Anal. Sci. (1999). doi:10.2116/analsci.15.827
  6. A.J. Dominis, G.M. Spinks, L.A.P. Kane-Maguire, G.G. Wallace, Synth. Met. (2002). doi:10.1016/S0379-6779(02)00048-6
  7. A.J. Heeger, Rev. Mod. Phys. (2001). doi:10.1103/RevModPhys.73.681
  8. M. Irimia-Vladu, J.W. Fergus, Synth. Met. (2006). doi:10.1016/j.synthmet.2006.11.004
  9. J. Janata, M. Josowicz, Nat Mater. (2003). doi:10.1038/nmat768
  10. E.T. Kang, K.G. Neoh, K.L. Tan, Prog. Polym. Sci. (1998). doi:10.1016/S0079-6700(97)00030-0
  11. D. Kriz, L.I. Andersson, M. Khayyami, B. Danielsson, P. Larsson, K. Mosbach, Biomimetics 3, 2 (1995)Google Scholar
  12. U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Anal. Chim. Acta. (2008). doi:10.1016/j.aca.2008.02.068
  13. K.S. Lee, G.B. Blanchet, F. Gao, Y.-L. Loo, Appl. Phys. Lett. (2005). doi:10.1063/1.1862345
  14. K.S. Lee, T.J. Smith, K.C. Dickey, J.E. Yoo, K.J. Stevenson, Y.L. Loo, Adv. Funct. Mater. (2006). doi:10.1002/adfm.200600170
  15. A.G. MacDiarmid, A.J. Epstein, Faraday Discuss. (1989). doi:10.1039/DC9898800317
  16. A.G. MacDiarmid, A.J. Epstein, Synth. Met. (1995). doi:10.1016/0379-6779(94)02374-8
  17. A.G. MacDiarmid, Synth. Met. (1997). doi:10.1016/S0379-6779(97)80658-3
  18. A. Malinauskas, Polymer (2001). doi:10.1016/S0032-3861(00)00800-4
  19. N. Mano, J.E. Yoo, J. Tarver, Y.L. Loo, A. Heller, J. Am. Chem. Soc. (2007). doi:10.1021/ja071946c
  20. P.M. McManus, R.J. Cushman, S.C. Yang, J. Phys. Chem. (1987). doi:10.1021/j100287a050
  21. H.S. Moon, J.K. Park, Synth. Met. (1998). doi:10.1016/S0379-6779(98)80090-8
  22. E.P. Plueddemann, Silane Coupling Agents (Plenum, New York, 1991)Google Scholar
  23. G.K. Prasad, T.P. Radhakrishnan, D.S. Kumar, M.G. Krishna, Sens. Actuators, B, Chem. (2005). doi:10.1016/j.snb.2004.09.011
  24. A. Ramanaviciene, A. Ramanavicius, Anal. Bioanal. Chem. (2004). doi:10.1007/s00216-004-2573-6
  25. L. Sun, H. Liu, R. Clark, S.C. Yang, Synth. Met. (1997). doi:10.1016/S0379-6779(96)03839-8
  26. J. Tarver, J.E. Yoo, T.J. Dennes, J. Schwartz, Y.L. Loo, Chem. Mater. (2009). doi:10.1021/cm802314h
  27. S. Virji, R.B. Kaner, B.H. Weiller, J. Phys. Chem. B. (2006). doi:10.1021/jp063166g
  28. J. Wang, M. Jiang, Langmuir (2000). doi:10.1021/la991122b
  29. J.G. Webster, Electrical Measurement, Signal Processing, and Displays (CRC, Boca Raton, 2004)Google Scholar
  30. Y.N. Xia, J.M. Wiesinger, A.G. Macdiarmid, A.J. Epstein, Chem. Mater. (1995). doi:10.1021/cm00051a002
  31. D. Yang, P.N. Adams, L. Brown, B.R. Mattes, Synth. Met. (2006). doi:10.1016/j.synthmet.2006.09.002
  32. J.E. Yoo, T.L. Bucholz, S.Y. Jung, Y.L. Loo, J. Mater. Chem. (2008). doi:10.1039/b802829j
  33. J.E. Yoo, J.L. Cross, T.L. Bucholz, K.S. Lee, M.P. Espe, Y.-L. Loo, J Mater Chem. (2007). doi:10.1039/b618521e
  34. W. Zheng, Y. Min, A.G. MacDiarmid, M. Angelopoulos, Y.H. Liao, A.J. Epstein, Synth. Met. (1997). doi:10.1016/S0379-6779(97)80669-8

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Carolyn L. Bayer
    • 1
  • Alper A. Konuk
    • 2
  • Nicholas A. Peppas
    • 1
    • 2
    • 3
  1. 1.Department of Biomedical Engineering, Center on Biomaterials, Drug Delivery, Bionanotechnology and Molecular RecognitionThe University of Texas at AustinAustinUSA
  2. 2.Department of Chemical Engineering, Center on Biomaterials, Drug Delivery, Bionanotechnology and Molecular RecognitionThe University of Texas at AustinAustinUSA
  3. 3.Department of Pharmaceutics, Center on Biomaterials, Drug Delivery, Bionanotechnology and Molecular RecognitionThe University of Texas at AustinAustinUSA

Personalised recommendations