Biomedical Microdevices

, Volume 12, Issue 3, pp 419–434 | Cite as

Multiphysics modeling of responsive characteristics of ionic-strength-sensitive hydrogel

Article

Abstract

A multiphysics model is developed in this paper for simulation of the volume transition mechanism of the smart hydrogel in response to the changes in the ionic strength of bathing solution as an important measure of the ionic concentration of that solution, which is termed the multi-effect-coupling ionic-strength-stimulus (MECis) model. In the present works, the ionic strength is treated as a main stimulus and incorporated into both the ionic convection-diffusion system in the Nernst-Planck flux and the fixed charge density equation characterized by Langmuir isotherm theory. Due to the diffusion and convection, the osmotic pressure is produced by the difference in the ionic concentration between the interior hydrogel and exterior solution, which drives the swelling of the smart hydrogel. The deformation of the ionic-strength-sensitive hydrogel is described by the momentum conservation law, in which the osmotic pressure is a main driving source. Apart from osmotic pressure, however, the repulsive force between the fixed charges is also considered in the mechanical equilibrium equation as another driving source for the swelling of the hydrogel. The simulation is conducted for one-dimensional steady-state problem, and then compared with the experimental data and other theories from open literature. The comparisons demonstrate that the MECis model can simulate well the swelling behavior of the ionic-strength-sensitive hydrogel qualitatively and quantitatively. Probably it is able to predict the responsive characteristics of the bathing solution including the distribution of diffusive ionic concentrations and electrical potential.

Keywords

Smart hydrogel Ionic strength Multiphysics model 

References

  1. R.A. Alberty, R.J. Silbey, Physical chemistry (Wiley, Singapore, 1997)Google Scholar
  2. V.S. Bagotsky, Fundamentals of electrochemistry (Wiley, New Jersey, 2005)CrossRefGoogle Scholar
  3. J.P. Baker, L.H. Hong, H.W. Blanch, J.M. Prausnitz, Macromolecules 27, 1446–1454 (1994)CrossRefGoogle Scholar
  4. J.P. Baker, H.W. Blanch, J.M. Prausnitz, Poly 36, 1061–1069 (1995)CrossRefGoogle Scholar
  5. J.-L. Barrat, F. Joanny, in: Theory of Polyelectrolyte Solutions, ed. by I. Prigogine, S.A.R. (1996) AdChP, pp. 1–66Google Scholar
  6. P.M. Bellan, Fundamentals of plasma physics (Cambridge University Press, Cambridge, 2006)Google Scholar
  7. L. Brannon-Peppas, N.A. Peppas, Chem. Eng. Sci. 46, 715–722 (1991)CrossRefGoogle Scholar
  8. S.E. Burke, C.J. Barrett, Langmuir 19, 3297–3303 (2003)CrossRefGoogle Scholar
  9. T. Canal, N.A. Peppas, J. Biomed. Mater. Res. 23, 1183–1193 (1989)CrossRefGoogle Scholar
  10. R.J.F.L.D. Carvalho, E. Trizac, J.-P. Hansen, EL, 43, 369–375 (1998)Google Scholar
  11. T. Caykara, C. Ozyurek, O. Kantoglu, O.G. Ven, J. Polym. Sci. Part B: Polym. Phys. 38, 2063–2071 (2000)CrossRefGoogle Scholar
  12. T. Caykara, M. Dogmus, O. Kantoglu, J. Polym. Sci., Part B: Polym. Phys. 42, 2586–2594 (2004)CrossRefGoogle Scholar
  13. T. Caykara, M. Dogmus, J. Macromol. Sci. Part A: Pure Appl. Chem. 42, 105–111 (2005)CrossRefGoogle Scholar
  14. S.K. De, N.R. Aluru, Mech. Mater. 36, 395–410 (2004)CrossRefGoogle Scholar
  15. S.K. De, N.R. Aluru, B. Johnson, W.C. Crone, D.J. Beebe, J. Moore, J. Microelectromech. S. 11, 544–555 (2002)CrossRefGoogle Scholar
  16. D. Dhara, C.K. Nisha, P.R. Chatterji, J. Macromol. Sci. Part A: Pure Appl. Chem. 36, 197–210 (1999)CrossRefGoogle Scholar
  17. D.T. Eddington, D.J. Beebe, Adv. Drug Del. Rev. 56, 199–210 (2004)CrossRefGoogle Scholar
  18. S. Edgecombe, P. Linse, Poly 49, 1981–1992 (2008)CrossRefGoogle Scholar
  19. A.E. English, S. Mafé, J.A. Manzanares, X. Yu, A.Y. Grosberg, T. Tanaka, J. Chem. Phys. 104, 8713–8720 (1996)CrossRefGoogle Scholar
  20. R. Feynman, R. Leighton, M. Sands, The Feynman Lectures on Physics, (1964)Google Scholar
  21. P.J. Flory, Principles of polymer chemistry (Cornell University Press Ithaca, NY, 1953)Google Scholar
  22. P.J. Flory, J.J. Rehner, J. Chem. Phys. 11, 512–520 (1943a)CrossRefGoogle Scholar
  23. P.J. Flory, J.J. Rehner, J. Chem. Phys. 11, 521–526 (1943b)CrossRefGoogle Scholar
  24. H. Frusawa, R. Hayakawa, PhRvE 58, 6145 (1998)Google Scholar
  25. P.E. Grimshaw, J.H. Nussbaum, A.J. Grodzinsky, M.L. Yarmush, J. Chem. Phys. 93, 4462–4472 (1990)CrossRefGoogle Scholar
  26. M. Guenther, G. Gerlach, C. Corten, D. Kuckling, J. Sorber, K.F. Arndt, Sens Actuators B: Chem. 132, 471–476 (2008)CrossRefGoogle Scholar
  27. H.H. Hooper, J.P. Baker, H.W. Blanch, J.M. Prausnitz, Macromolecules 23, 1096–1104 (1990)CrossRefGoogle Scholar
  28. F. Horkay, I. Tasaki, P.J. Basser, Biomacromolecules 1, 84–90 (2000)CrossRefGoogle Scholar
  29. W.T.S. Huck, Mater. Today 11, 24–32 (2008)CrossRefGoogle Scholar
  30. M.R. Hynd, J.N. Turner, W. Shain, J. Biomater. Sci. Polym. Ed. 18, 1223–1244 (2007)CrossRefGoogle Scholar
  31. A.C. Jen, M.C. Wake, A.G. Mikos, Biotechnol. Bioeng. 50, 357–364 (1996)CrossRefGoogle Scholar
  32. G. Kagata, J.P. Gong, Y. Osada, Wear 251, 1188–1192 (2001)CrossRefGoogle Scholar
  33. E. Karadag, D. Saraydin, O. Guven, Macromol. Mater. Eng. 286, 34–42 (2001)CrossRefGoogle Scholar
  34. M. Kasseh, E. Keh, Colloid. Polym. Sci. 284, 489–496 (2006)CrossRefGoogle Scholar
  35. M.Y. Kizilay, O. Okay, Macromolecules 36, 6856–6862 (2003)CrossRefGoogle Scholar
  36. G. Kortum, W. Vogel, K. Andrussow, Dissociation constants of organic acides in aqueous solution (Butter Worths, London, 1961)Google Scholar
  37. G. Kortum, W. Vogel, K. Andrussow, Dissociation constants of organic acids and bases, in CRC hand book of chemistry and physics, ed. by D.R. Lide (CRC, New York, 2000)Google Scholar
  38. S. Kudo, M. Konno, S. Saito, Poly 34, 2370–2373 (1993)CrossRefGoogle Scholar
  39. M. Kurata, Y. Tsunashima, Viscosity-molecular weight relationships and unperturbed dimensions of linear chain molecules, in Polymer handbook, ed. by J. Brandrup, E.H. Immergut (Wiley, New York, 1989), pp. VII/1–VII/60Google Scholar
  40. W.-F. Lee, R.-J. Wu, J. Appl. Polym. Sci. 62, 1099–1114 (1996)CrossRefGoogle Scholar
  41. W.-F. Lee, P.-L. Yeh, J. Appl. Polym. Sci. 66, 499–507 (1997)CrossRefGoogle Scholar
  42. Y. Levin, M.C. Barbosa, M.N. Tamashiro, EL 41, 123 (1998)CrossRefGoogle Scholar
  43. H. Li, T.Y. Ng, J.Q. Cheng, K.Y. Lam, Comput. Mech. 33, 30–41 (2003)MATHCrossRefMathSciNetGoogle Scholar
  44. H.J. van der Linden, S. Herber, W. Olthuis, P. Bergveld, Analyst. 128, 325–331 (2003)CrossRefGoogle Scholar
  45. H. Liu, M. Zhen, R. Wu, Macromol. Chem. Phys. 208, 874–880 (2007)CrossRefGoogle Scholar
  46. L.C. Lopez-Ureta, E. Orozco-Guareno, L.E. Cruz-Barba, A. Gonzalez-Alvarez, F. Bautista-Rico, J. Polym. Sci. Part A: Polym. Chem. 46, 2667–2679 (2008)CrossRefGoogle Scholar
  47. R. Luo, H. Li, K. Lam, Anal. Bioanal. Chem. 389, 863–873 (2007)CrossRefGoogle Scholar
  48. R. Luo, H. Li, E. Birgersson, K.Y. Lam, J. Biomed. Mater. Res. Part A 85A, 248–257 (2008)CrossRefGoogle Scholar
  49. B.A. Mann, K. Kremer, C. Holm, Macromol. Symp. 237, 90–107 (2006)CrossRefGoogle Scholar
  50. G.S. Manning, Q. Rev. Biophys. 11, 179–246 (1978)CrossRefGoogle Scholar
  51. P. Markland, Y. Zhang, G.L. Amidon, V.C. Yang, J. Biomed. Mater. Res. 47, 595–602 (1999)CrossRefGoogle Scholar
  52. P. Martens, J. Blundo, A. Nilasaroya, R.A. Odell, J. Cooper-White, L.A. Poole-Warren, Chem. Mater. 19, 2641–2648 (2007)CrossRefGoogle Scholar
  53. T.R. Matzelle, G. Geuskens, N. Kruse, Macromolecules 36, 2926–2931 (2003)CrossRefGoogle Scholar
  54. N. Miura, P.L. Dubin, C.N. Moorefield, G.R. Newkome, Langmuir 15, 4245–4250 (1999)CrossRefGoogle Scholar
  55. J.H. Nussbaum, Electric field control of mechanical and electrochemical properties of polyelectrolyte gel membranes. Dept. of Electrical Engineering and Computer Science. Massachusetts Institute of Technology, (1986)Google Scholar
  56. O. Okay, S.B. Sariisik, S.D. Zor, J. Appl. Polym. Sci. 70, 567–575 (1998)CrossRefGoogle Scholar
  57. Y. Osada, J. Gong, Prog. Polym. Sci. 18, 187–226 (1993)CrossRefGoogle Scholar
  58. H.M. Park, Y.J. Choi, IJHMT 52, 4279–4295 (2009)MATHCrossRefMathSciNetGoogle Scholar
  59. N.A. Peppas, H.J. Moynihan, L.M. Lucht, J. Biomed. Mater. Res. 19, 397–411 (1985)CrossRefGoogle Scholar
  60. R.J. Phillips, J. Colloid Interface Sci. 338, 250–260 (2009)CrossRefGoogle Scholar
  61. A. Pourjavadi, S. Barzegar, G.R. Mahdavinia, Carbohydr. Polym. 66, 386–395 (2006)CrossRefGoogle Scholar
  62. S.M. Russell, G. Carta, Ind. Eng. Chem. Res. 44, 8213–8217 (2005)CrossRefGoogle Scholar
  63. A. Saeidi, A. Katbab, E. Vasheghani-Farahani, F. Afshar, Polym. Int. 53, 92–100 (2004)CrossRefGoogle Scholar
  64. E. Samson, J. Marchand, J. Colloid Interface Sci. 215, 1–8 (1999)CrossRefGoogle Scholar
  65. M. Shahinpoor, Smart. Mater. Struct. 367 (1994)Google Scholar
  66. S. Shukla, A.K. Bajpai, J. Appl. Polym. Sci. 102, 84–95 (2006)CrossRefGoogle Scholar
  67. P.J. Sinko, Martin’s physical pharmacy and pharmaceutical sciences (Lippincott Williams & Wilkins, PA, 2006)Google Scholar
  68. J.U. Sommer, T.A. Vilgis, G. Heinrich, J. Chem. Phys. 100, 9181–9191 (1994)CrossRefGoogle Scholar
  69. N. Uyanik, C. Erbil, Eur. Polym. J. 36, 2651–2654 (2000)CrossRefGoogle Scholar
  70. E. Vallés, D. Durando, I. Katime, E. Mendizábal, J.E. Puig, Polym. Bull. 44, 109–114 (2000)CrossRefGoogle Scholar
  71. J. Veličković, J. Filipović, D.P. Djakov, Polym. Bull. 32, 169–172 (1994)CrossRefGoogle Scholar
  72. T.A. Vilgis, A. Johner, J.F. Joanny, Eur Phys J E: Soft Matter Biol Phys 3, 237–244 (2000)CrossRefGoogle Scholar
  73. H. Vink, J. Chem. Soc. Faraday Trans. 82, 2353–2365 (1986)CrossRefGoogle Scholar
  74. T. Wallmersperger, D.B.B. Kroplin, Macromol. Symp. 254, 306–313 (2007)Google Scholar
  75. T. Wallmersperger, B. Kroeplin, J. Holdenried, R.W. Guelch, in A coupled multifield formulation for ionic polymer gels in electric fields, ed. by B.-C. Yoseph (2001) SPIE, pp. 264–275Google Scholar
  76. H. Wennerström, B. Lindman, G. Lindblom, G.J.T. Tiddy, J. Chem. Soc., Faraday Trans. 1: Physical Chemistry in Condensed Phases 75, 663–668 (1979)Google Scholar
  77. R.-L. Wu, S.-M. Xu, X.-J. Huang, L.-Q. Cao, S. Feng, J.-D. Wang, J. Polym. Res. 13, 33–37 (2006)CrossRefGoogle Scholar
  78. Q. Yan, J.J. De Pablo, Phys. Rev. Lett. 91, 018301/018301–018301/018304 (2003)Google Scholar
  79. B. Zhao, J.S. Moore, Langmuir 17, 4758–4763 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations