Biomedical Microdevices

, Volume 12, Issue 3, pp 381–387 | Cite as

An implantable Teflon chip holding lithium naphthalocyanine microcrystals for secure, safe, and repeated measurements of pO2 in tissues

  • Ramasamy P. Pandian
  • Guruguhan Meenakshisundaram
  • Anna Bratasz
  • Edward Eteshola
  • Stephen C. Lee
  • Periannan Kuppusamy
Article

Abstract

Lithium naphthalocyanine (LiNc) is a crystalline material that has significant potential as a probe for EPR (electron paramagnetic resonance)-based biological oximetry (Pandian et al. J. Mater. Chem. 19:4138–4147, 2009a). However, implantation of LiNc crystals in tissues in raw or neat form is undesirable since dispersion of crystals in tissue may lead to loss of EPR signal, while also exacerbating biocompatibility concerns due to tissue exposure. To overcome these concerns, we have encapsulated LiNc crystals in an oxygen-permeable polymer, Teflon AF 2400 (TAF). Fabrication of TAF films incorporating LiNc particles (denoted as LiNc:TAF chip) was carried out using solvent-evaporation techniques. The EPR linewidth of LiNc:TAF chip was linearly dependent on oxygen-partial pressure (pO2) and did not change significantly relative to neat LiNc crystals. LiNc:TAF chip responded to changes in pO2 reproducibly, enabling dynamic measurements of oxygenation in real time. The LiNc:TAF chips were stable in tissues for more than 2 months and were capable of providing repeated measurements of tissue oxygenation for extended periods of time. The results demonstrated that the newly fabricated, highly oxygen-sensitive LiNc:TAF chip will enhance the applicability of EPR oximetry for long-term and clinical applications.

Keywords

Encapsulation Oxygen permeability EPR oximetry Implantable biosensor Teflon Lithium naphthalocyanine 

References

  1. A.Y. Alentiev, Y.P. Yampolskii, V.P. Shantarovich, S.M. Nemser, N.A. Plate, J. Membr. Sci. 126, 123–132 (1997)CrossRefGoogle Scholar
  2. A. Bratasz, R.P. Pandian, G. Ilangovan, P. Kuppusamy, Adv. Exp. Med. Biol. 578, 375–380 (2006)CrossRefGoogle Scholar
  3. M. Dinguizli, S. Jeumont, N. Beghein, J. He, T. Walczak, P.N. Lesniewski, H. Hou, O.Y. Grinberg, A. Sucheta, H.M. Swartz, B. Gallez, Biosens. Bioelectron. 21(7), 1015–1022 (2006)CrossRefGoogle Scholar
  4. M. Dinguizli, N. Beghein, B. Gallez, Physiol. Meas. 29(11), 1247–1254 (2008)CrossRefGoogle Scholar
  5. E. Eteshola, R.P. Pandian, S.C. Lee, P. Kuppusamy, Biomed. Microdevices 11(2), 379–387 (2009)CrossRefGoogle Scholar
  6. G. Ilangovan, A. Bratasz, H. Li, P. Schmalbrock, J.L. Zweier, P. Kuppusamy, Magn. Reson. Med. 52(3), 650–657 (2004)CrossRefGoogle Scholar
  7. A.C. Kulkarni, P. Kuppusamy, N. Parinandi, Antioxid. Redox Signal. 9(10), 1717–1730 (2007)CrossRefGoogle Scholar
  8. V.K. Kutala, N.L. Parinandi, R.P. Pandian, P. Kuppusamy, Antioxid. Redox Signal. 6(3), 597–603 (2004)CrossRefGoogle Scholar
  9. K.J. Liu, P. Gast, M. Moussavi, S.W. Norby, N. Vahidi, T. Walczak, M. Wu, H.M. Swartz, Proc. Natl Acad. Sci. USA 90(12), 5438–5442 (1993)CrossRefGoogle Scholar
  10. G. Meenakshisundaram, E. Eteshola, R.P. Pandian, A. Bratasz, S.C. Lee, P., Kuppusamy. Biomed. Microdevices 11(4), 773–782 (2009a)Google Scholar
  11. G. Meenakshisundaram, E. Eteshola, R.P. Pandian, A. Bratasz, K. Selvendiran, S.C. Lee, M.C. Krishna, H.M. Swartz, P. Kuppusamy, Biomed. Microdevices 11(4), 817–826 (2009b)Google Scholar
  12. T.C. Merkel, I. Pinnav, R.S. Prabhakar, B.D. Freeman, Gas and vapor transport properties of perfluropolymers, in Materials science of membranes for gas and vapor separation, ed. by Y. Yampolskii, I. Pinnav, B.D. Freeman (Wiley, Chichester, 2006)Google Scholar
  13. R.P. Pandian, N.L. Parinandi, G. Ilangovan, J.L. Zweier, P. Kuppusamy, Free Radic. Biol. Med. 35(9), 1138–1148 (2003)CrossRefGoogle Scholar
  14. R.P. Pandian, Y. Kim, P.M. Woodward, J.M. Zweier, P.T. Manoharan, P. Kuppusamy, J. Mater. Chem. 16(36), 3609–3618 (2006)CrossRefGoogle Scholar
  15. R.P. Pandian, M. Dolgos, V. Dang, J.Z. Sostaric, P.M. Woodward, P. Kuppusamy, Chem. Mater. 19(14), 3545–3552 (2007)CrossRefGoogle Scholar
  16. R.P. Pandian, M. Dolgos, C. Marginean, P.M. Woodward, P. Chris Hammel, P.T. Manoharan, P. Kuppusamy, J. Mater. Chem. 19, 4138–4147 (2009a)CrossRefGoogle Scholar
  17. R.P. Pandian, S.M. Chacko, M.L. Kuppusamy, B.K. Rivera, P. Kuppusamy, Adv. Exp. Med. Biol. (In press) (2009b)Google Scholar
  18. R. Springett, H.M. Swartz, Antioxid. Redox Signal. 9(8), 1295–1301 (2007)CrossRefGoogle Scholar
  19. H.M. Swartz, N. Khan, Biol Magn Reson 23, 197–228 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ramasamy P. Pandian
    • 1
    • 2
    • 4
  • Guruguhan Meenakshisundaram
    • 1
    • 2
    • 4
  • Anna Bratasz
    • 1
    • 2
    • 4
  • Edward Eteshola
    • 3
    • 4
  • Stephen C. Lee
    • 3
    • 4
  • Periannan Kuppusamy
    • 1
    • 2
    • 4
  1. 1.Center for Biomedical EPR Spectroscopy and ImagingThe Ohio State UniversityColumbusUSA
  2. 2.Department of Internal MedicineThe Ohio State UniversityColumbusUSA
  3. 3.Department of Biomedical EngineeringThe Ohio State UniversityColumbusUSA
  4. 4.Davis Heart and Lung Research InstituteThe Ohio State UniversityColumbusUSA

Personalised recommendations