Active and biomimetic nanofilters for selective protein separation

Abstract

Selective protein channels in cell and nuclear membranes act as gateways to control the passage of molecules across. The selectivity of these channels stems from attractive potentials of the binding sites in the transmembrane proteins. These channels can filter out small volume of solutions with high precision. Motivated from this phenomenon, we report biomimetic facilitated transport modality to selectively separate a target molecule from a mixture of molecules. The attractive potential is generated by specific antibodies immobilized inside 15 nm diameter polycarbonate nanochannels. Two proteins with similar physicochemical properties (Bovine Serum Albumin 66 kDa, and Human Hemoglobin 65 kDa) are chosen as model molecules. The protein molecules are mixed in ratios of 1:1, 1:20 and 1:40 (Hb:BSA), and separation of molecules is demonstrated. The selectivity of membrane can be switched from Hb to BSA by changing the immobilized antibody inside the membrane channels. This approach can be used to selectively enrich any target molecule from a complex sample to enhance signal-to-noise ratio for early disease diagnosis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. W.R. Bauer, W. Nadler, Proc. Natl. Acad. Sci. 103, 11446–11451 (2006)

    Article  Google Scholar 

  2. N.V. Bhat, D.S. Wavhal, J. Appl. Polym. Sci. 76, 258–265 (2000)

    Article  Google Scholar 

  3. C.T. Black, K.W. Guarini, G. Breyta, M.C. Colburn, R. Ruiz, R.L. Sandstrom, E.M. Sikorski, Y. Zhang, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 24, 3188 (2006)

    Article  Google Scholar 

  4. W.H. Chu, R. Chin, T. Huen, M. Ferrari, J. Microelectromech. Syst. 8(1), 34–42 (1999)

    Article  Google Scholar 

  5. T.A. Desai, D. Hansford, M. Ferrari, J. Membr. Sci. 159(1–2), 221–231 (1999a)

    Article  Google Scholar 

  6. T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, M. Ferrari, Biomed. Microdevices 2(1), 11–40 (1999b)

    Article  Google Scholar 

  7. T.A. Desai, D.J. Hansford, L. Leoni, M. Essenpreis, M. Ferrari, Biosens. Bioelectron. 15(9–10), 453–462 (2000)

    Article  Google Scholar 

  8. J. Fu, P. Mao, J. Han, Nat. Protoc. 4(11), 1681–1698 (2009)

    Article  Google Scholar 

  9. S.M. Iqbal, D. Akin, R. Bashir, Nat. Nano. 2(4), 243–248 (2007)

    Article  Google Scholar 

  10. K.B. Jirage, J.C. Hulteen, C.R. Martin, Science 278(5338), 655 (1997)

    Article  Google Scholar 

  11. T. Jovanovic-Talisman, J. Tetenbaum-Novatt, A.S. McKenney, A. Zilman, R. Peters, M.P. Rout, B.T. Chait, Nature 457(7232), 1023–1027 (2009)

    Article  Google Scholar 

  12. T.J. Kindt, B.A. Osborne, R.A. Goldsby, Antigen-Antibody interactions: Principles and applications in Kuby Immunology, W.H. Freeman Biology:145–146 (2006)

  13. P. Kohli, C.C. Harrell, Z. Cao, R. Gasparac, W. Tan, C.R. Martin, Science 305, 984–986 (2004)

    Article  Google Scholar 

  14. J.R. Ku, P. Stroeve, Langmuir 20(5), 2030–2032 (2004)

    Article  Google Scholar 

  15. S. Kuiper, C.J.M. Van Rijn, W. Nijdam, M.C. Elwenspoek, J. Membr. Sci. 150(1), 1–8 (1998)

    Article  Google Scholar 

  16. M. Mulder, Basic Principles of Membrane Technology (Springer, 1996)

  17. M.R. Noor, S. Goyal, S.M. Christensen, S.M. Iqbal, Appl. Phys. Lett. 95(7), 073703 (2009)

    Article  Google Scholar 

  18. E.N. Savariar, K. Krishnamoorthy, S. Thayumanavan, Nat. Nano. 3(2), 112 (2008)

    Article  Google Scholar 

  19. C.C. Striemer, T.R. Gaborski, J.L. McGrath, P.M. Fauchet, Nature 445, 749 (2007)

    Article  Google Scholar 

  20. H.D. Tong, H.V. Jansen, V.J. Gadgil, C.G. Bostan, E. Berenschot, C.J.M. van Rijn, M. Elwenspoek, Nano Lett. 4(2), 283–288 (2004)

    Article  Google Scholar 

  21. Z. Wang, R.X. Li, Nanoscale Res. Lett. 2(2), 69–74 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. S. M. Christensen for experimental assistance in quantifying concentrations of proteins, and Dr. Shan Sun-Mitchell for help with data analysis. Y-t. K. acknowledges support from the Nano-Bio Cluster Program at the University of Texas at Arlington. S. G. and S. M. I. acknowledge support from NSF CAREER grant ECCS-0845669.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Samir M. Iqbal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goyal, S., Kim, Yt., Li, Y. et al. Active and biomimetic nanofilters for selective protein separation. Biomed Microdevices 12, 317–324 (2010). https://doi.org/10.1007/s10544-009-9387-4

Download citation

Keywords

  • Bio-separation technology
  • Nanofiltration
  • Nanochannels
  • BSA
  • Hb