Biomedical Microdevices

, Volume 12, Issue 1, pp 169–177 | Cite as

Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device

Article

Abstract

We report a novel and facile method for fabricating coaxial microfluidic devices processing various dimensions at low cost, in which polypropylene hollow fibers or glass capillaries are used as the tip of the dispersed phase injection tube. With this coaxial microfluidic device, monodisperse biocompatible microspheres ranging from 300 to 800 μm were obtained by collecting oil-in-water or water-in-oil emulsions and solidifying the suspended microspheres. Microsphere size could be controlled by changing the tips or tuning the concentrations of the dispersed and continuous phases. By adding functional nanoparticles into the dispersed phase, it was demonstrated that fluorescent and magnetic microspheres can be fabricated easily using these microfluidic devices.

Keywords

Biomaterial Functional Monodisperse Microfluidic device Microspheres Large-sized 

References

  1. S. Abraham, E.H. Jeong, T. Arakawa, S. Shoji, K.C. Kim, I. Kim, J.S. Go, Lab Chip 6, 752–756 (2006)CrossRefGoogle Scholar
  2. S.R. Bhatia, S.F. Khattak, S.C. Roberts, Curr. Opin. Colloid Interface Sci. 10, 45–51 (2005)CrossRefGoogle Scholar
  3. L. Capretto, S. Mazzitelli, C. Balestra, A. Tosib, C. Nastruzzi, Lab Chip 8, 617–621 (2008)CrossRefGoogle Scholar
  4. T. Chandy, D.L. Mooradian, G.H.R. Rao, Artif. Organs 23, 894–903 (1999)CrossRefGoogle Scholar
  5. C. Choi, J. Jung, Y.W. Rhee, D. Kim, S. Shim, C. Lee, Biomed. Microdevices 9, 855–862 (2007)CrossRefGoogle Scholar
  6. D. Dendukuri, K. Tsoi, T.A. Hatton, P.S. Doyle, Langmuir 21, 2113–2116 (2005)CrossRefGoogle Scholar
  7. M.A. Holgado, J.L. Arias, M.J. Cozar, J. Alvarez-Fuentes, A.M. Ganan-Calvo, M. Fernandez-Arevalo, Int. J. Pharm. 358, 27–35 (2008)CrossRefGoogle Scholar
  8. D. Horak, N. Chekina, J. Appl. Polym. Sci. 102, 4348–4357 (2006)CrossRefGoogle Scholar
  9. D.L. Huber, Small 1, 482–501 (2005)CrossRefGoogle Scholar
  10. L.H. Hung, R. Lin, A.P. Lee, Lab Chip 8, 983–987 (2008)CrossRefGoogle Scholar
  11. J.K. Jaiswal, S.M. Simon, Trends in Cell Biology 14, 497–504 (2004)CrossRefGoogle Scholar
  12. J.N. Lee, C. Park, G.M. Whitesides, Anal. Chem. 75, 6544–6554 (2003)CrossRefGoogle Scholar
  13. W.B. Lee, C.H. Weng, F.Y. Cheng, C.S. Yeh, H.Y. Lei, G.B. Lee, Biomed. Microdevices 11, 161–171 (2009)CrossRefGoogle Scholar
  14. L.L. Li, D. Chen, Y.Q. Zhang, Z.T. Deng, X.L. Ren, X.W. Meng, F.Q. Tang, J. Ren, L. Zhang, Nanotechnology 18, 405102 (2007)CrossRefGoogle Scholar
  15. S.Q. Liu, Y.Y. Yang, X.M. Liu, Y.W. Tong, Biomacromolecules 4, 1784–1793 (2003)CrossRefGoogle Scholar
  16. K. Liu, H.J. Ding, J. Liu, Y. Chen, X.Z. Zhao, Langmuir 22, 9453–9457 (2006)CrossRefGoogle Scholar
  17. S. Lu, J. Forcada, J. Polym. Sci., Part A: Polym. Chem. 44, 4187–4203 (2006)CrossRefGoogle Scholar
  18. L. Martin-Banderas, M. Flores-Mosquera, P. Riesco-Chueca, A. Rodriguez-Gil, A. Cebolla, S. Chavez, A.M. Ganan-Calvo, Small 1, 688–692 (2005)CrossRefGoogle Scholar
  19. Y. Morimoto, W.H. Tan, S. Takeuchi, Biomed. Microdevices 11, 369–377 (2009)CrossRefGoogle Scholar
  20. T. Nisisako, T. Torii, T. Higuchi, Lab Chip 2, 24–26 (2002)CrossRefGoogle Scholar
  21. T. Nisisako, T. Torii, T. Higuchi, Chem. Eng. J. 101, 23–29 (2004)CrossRefGoogle Scholar
  22. L.N. Okassa, H. Marchais, L. Douziech-Eyrolles, K. Herve, S. Cohen-Jonathan, E. Munnier, M. Souce, C. Linassier, P. Dubois, I. Chourpa, Eur. J. Pharm. Biopharm. 67, 31–38 (2007)CrossRefGoogle Scholar
  23. S. Okushima, T. Nisisako, T. Torii, T. Higuchi, Langmuir 20, 9905–9908 (2004)CrossRefGoogle Scholar
  24. G. Orive, R.M. Hernandez, A.R. Gascon, R. Calafiore, T.M.S. Chang, P. de Vos, G. Hortelano, D. Hunkeler, I. Lacik, J.L. Pedraz, Trends Biotechnol 22, 87–92 (2004)CrossRefGoogle Scholar
  25. G. Orive, A.M. Carcaboso, R.M. Hernandez, A.R. Gascon, J.L. Pedraz, Biomacromolecules 6, 927–931 (2005)CrossRefGoogle Scholar
  26. G. Orive, S.K. Tam, J.L. Pedraz, J.P. Halle, Biomaterials 27, 3691–3700 (2006)CrossRefGoogle Scholar
  27. S.J. Park, S.H. Kim, J. Colloid Interface Sci. 271, 336–341 (2004)CrossRefGoogle Scholar
  28. S.L. Poe, M.A. Cummings, M.R. Haaf, D.T. McQuade, Angew. Chem 118, 1574–1578 (2006). Angew. Chem., Int. Ed., 45, 1544–1548CrossRefGoogle Scholar
  29. K. Rezwan, Q.Z. Chen, J.J. Blaker, A.R. Boccaccini, Biomaterials 27, 3413–3431 (2006)CrossRefGoogle Scholar
  30. S. Sakai, K. Kawakami, J. of Biomed. Mater. Res., Part A 85A, 345–351 (2008)CrossRefGoogle Scholar
  31. L.F. Shen, P.E. Laibinis, T.A. Hatton, Langmuir 15, 447–453 (1999)CrossRefGoogle Scholar
  32. V. Stsiapura, A. Sukhanova, M. Artemyev, M. Pluot, J.H.M. Cohen, A.V. Baranov, V. Oleinikov, I. Nabiev, Anal. Biochem. 334, 257–265 (2004)CrossRefGoogle Scholar
  33. S.H. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G.X. Li, J. Am. Chem. Soc. 126, 273–279 (2004)CrossRefGoogle Scholar
  34. Y. Sun, B. Wang, C. Hui, H.P. Wang, J.M. Jiang, J. Macromol. Sci., Part B: Phys. 45, 653–658 (2006)CrossRefGoogle Scholar
  35. Y. Sun, B. Wang, H.P. Wang, J.M. Jiang, J. Colloid Interface Sci. 308, 332–336 (2007)CrossRefGoogle Scholar
  36. V.M. Tatard, M.C. Venier-Julienne, P. Saulnier, E. Prechter, J.P. Benoit, P. Menei, C.N. Montero-Menei, Biomaterials 26, 3727–3737 (2005)CrossRefGoogle Scholar
  37. S.Y. Teh, R. Lin, L.H. Hung, A.P. Lee, Lab Chip 8, 198–220 (2008)CrossRefGoogle Scholar
  38. H. Uludag, P. De Vos, P.A. Tresco, Adv. Drug Delivery Rev. 42, 29–64 (2000)CrossRefGoogle Scholar
  39. A.S. Utada, E. Lorenceau, D.R. Link, P.D. Kaplan, H.A. Stone, D.A. Weitz, Science 308, 537–541 (2005)CrossRefGoogle Scholar
  40. H.Z. Wang, H. Nakamura, M. Uehara, Y. Yamaguchi, M. Miyazaki, H. Maeda, Adv. Funct. Mater. 15, 603–608 (2005)CrossRefGoogle Scholar
  41. W.C. Wang, Q. Zhang, B.B. Zhang, D.N. Li, X.Q. Dong, L. Zhang, J. Chang, Chinese Sci. Bull. 53, 1165–1170 (2008)CrossRefGoogle Scholar
  42. J.T. Wilson, E.L. Chaikof, Adv. Drug Delivery Rev. 60, 124–145 (2008)CrossRefGoogle Scholar
  43. S.Q. Xu, Z.H. Nie, M. Seo, P. Lewis, E. Kumacheva, H.A. Stone, P. Garstecki, D.B. Weibel, I. Gitlin, G.M. Whitesides, Angew. Chem. 117, 734 (2005). Angew. Chem., Int. Ed., 44, 724–728CrossRefGoogle Scholar
  44. J.H. Xu, S.W. Li, C. Tostado, W.J. Lan, G.S. Luo, Biomed. Microdevices 11, 243–249 (2009)CrossRefGoogle Scholar
  45. W. Yin, H. Liu, M.Z. Yates, H. Du, F. Jiang, L. Guo, T.D. Krauss, Chem. Mater. 19, 2930–2936 (2007)CrossRefGoogle Scholar
  46. H. Zhang, E. Tumarkin, R. Peerani, Z. Nie, R.M.A. Sullan, G.C. Walker, E. Kumacheva, J. Am. Chem. Soc. 128, 12205–12210 (2006)CrossRefGoogle Scholar
  47. X. Zhang, Y. Xie, C.G. Koh, L. James Lee, Biomed Microdevices 11, 795–799 (2009)CrossRefGoogle Scholar
  48. X.X. Zhu, Q.H. Zhang, Y.G. Li, H.Z. Wang, J. Mater. Chem. 18, 5060–5062 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghaiChina

Personalised recommendations