Biomedical Microdevices

, Volume 12, Issue 1, pp 153–158 | Cite as

Transient alterations in slow oscillations of hippocampal networks by low-frequency stimulations on multi-electrode arrays

  • Geng Zhu
  • Xiangning Li
  • Jiangbo Pu
  • Wenjuan Chen
  • Qingming Luo


Slow oscillations in the hippocampus are correlated with memory consolidation and brain diseases. The characteristic firings of the hippocampal network in vitro are still poorly understood. Here, spontaneous oscillations (~0.004 Hz) were found in high-density hippocampal networks by multi-electrode arrays after 30 days in vitro. This kind of spontaneous activity was characterized by periodic synchronized superbursts, which persisted for approximately 60 s at long intervals. Additionally, 1-Hz stimulation (duration <120 s) could regulate these network-wide oscillatory activities by triggering the next synchronized superbursts prematurely. The results demonstrated that the slow oscillatory activities in hippocampal cultures could be regulated by external stimulation, which indicates that multi-electrode arrays provide a well-suited platform for studying the dynamics of slow oscillations in vitro and may help to elucidate the mechanism of electrical stimulation therapy.


Slow oscillations Low-frequency stimulation Cultured neuronal networks Multi-electrode array Synchronized superbursts 


  1. K.C. Cheung, Biomedical microdevices 9, 923 (2007)CrossRefGoogle Scholar
  2. A. Destexhe, S.W. Hughes, M. Rudolph, V. Crunelli, Trends Neurosci 30, 334 (2007)CrossRefGoogle Scholar
  3. G.W. Gross, A.N. Williams, J.H. Lucas, J Neurosci Methods 5, 13 (1982)CrossRefGoogle Scholar
  4. Y. Jimbo, A. Kawana, P. Parodi, V. Torre, Biol Cybern 83, 1 (2000)CrossRefGoogle Scholar
  5. F. Lante, M.C. de Jesus Ferreira, J. Guiramand, M. Recasens, M. Vignes, Hippocampus 16, 345 (2006)CrossRefGoogle Scholar
  6. A.K. Lee, M.A. Wilson, Neuron 36, 1183 (2002)CrossRefGoogle Scholar
  7. X. Leinekugel, R. Khazipov, R. Cannon, H. Hirase, Y. Ben-Ari, G. Buzsaki, Science 296, 2049 (2002)CrossRefGoogle Scholar
  8. X. Li, W. Zhou, M. Liu, Q. Luo, Conf Proc IEEE Eng Med Biol Soc 2, 2134 (2005)Google Scholar
  9. X. Li, W. Zhou, M. Liu, S. Zeng, Q. Luo, Prog Nat Sci 16, 1337 (2006)CrossRefGoogle Scholar
  10. Y. Li, W. Zhou, X. Li, S. Zeng, M. Liu, Q. Luo, Biosens. Bioelectron. (2007a)Google Scholar
  11. X. Li, W. Zhou, S. Zeng, M. Liu, Q. Luo, Biosens Bioelectron 22, 1538 (2007b)CrossRefGoogle Scholar
  12. E. Maeda, H.P. Robinson, A. Kawana, J Neurosci 15, 6834 (1995)Google Scholar
  13. L. Marshall, H. Helgadottir, M. Molle, J. Born, Nature 444, 610 (2006)CrossRefGoogle Scholar
  14. K.W. Meacham, R.J. Giuly, L. Guo, S. Hochman, S.P. DeWeerth, Biomedical microdevices 10, 259 (2008)CrossRefGoogle Scholar
  15. M. Penttonen, N. Nurminen, R. Miettinen, J. Sirvio, D.A. Henze, J. Csicsvari, G. Buzsaki, Neuroscience 94, 735 (1999)CrossRefGoogle Scholar
  16. J. Pine, J Neurosci Methods 2, 19 (1980)CrossRefGoogle Scholar
  17. H.P. Robinson, M. Kawahara, Y. Jimbo, K. Torimitsu, Y. Kuroda, A. Kawana, J Neurophysiol 70, 1606 (1993)Google Scholar
  18. P.A. Salin, M. Scanziani, R.C. Malenka, R.A. Nicoll, Proc Natl Acad Sci U S A 93, 13304 (1996)CrossRefGoogle Scholar
  19. G. Shahaf, S. Marom, J Neurosci 21, 8782 (2001)Google Scholar
  20. A. Sirota, G. Buzsaki, Thalamus Relat Syst 3, 245 (2005)CrossRefGoogle Scholar
  21. M. Steriade, A. Nunez, F. Amzica, J Neurosci 13, 3252 (1993)Google Scholar
  22. I. Vajda, J. van Pelt, P. Wolters, M. Chiappalone, S. Martinoia, E. van Someren, A. van Ooyen, Biophys J 94, 5028 (2008)CrossRefGoogle Scholar
  23. J. Van Pelt, M.A. Corner, P.S. Wolters, W.L. Rutten, G.J. Ramakers, Neurosci Lett 361, 86 (2004)CrossRefGoogle Scholar
  24. J. Van Pelt, I. Vajda, P.S. Wolters, M.A. Corner, G.J. Ramakers, Prog Brain Res 147, 173 (2005)Google Scholar
  25. D.A. Wagenaar, J. Pine, S.M. Potter, J Neurosci Methods 138, 27 (2004)CrossRefGoogle Scholar
  26. D.A. Wagenaar, Z. Nadasdy, S.M. Potter, Phys Rev E 73, 051907 (2006)CrossRefMathSciNetGoogle Scholar
  27. T. Wolansky, E.A. Clement, S.R. Peters, M.A. Palczak, C.T. Dickson, J Neurosci 26, 6213 (2006)CrossRefGoogle Scholar
  28. D.C. Wu, Z.H. Xu, S. Wang, Q. Fang, D.Q. Hu, Q. Li, H.L. Sun, S.H. Zhang, Z. Chen, Neurobiol Dis 31, 74 (2008)CrossRefGoogle Scholar
  29. W. Zhou, X. Li, M. Liu, Y. Zhao, G. Zhu, Q. Luo, Biosystems. (2008)Google Scholar
  30. L. Zhu, K.L. Blethyn, D.W. Cope, V. Tsomaia, V. Crunelli, S.W. Hughes, Neuroscience 141, 621 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Geng Zhu
    • 1
  • Xiangning Li
    • 1
  • Jiangbo Pu
    • 1
  • Wenjuan Chen
    • 1
  • Qingming Luo
    • 1
  1. 1.Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations