Biomedical Microdevices

, Volume 12, Issue 1, pp 145–151 | Cite as

Patterning alginate hydrogels using light-directed release of caged calcium in a microfluidic device

  • Bor-han Chueh
  • Ying Zheng
  • Yu-suke Torisawa
  • Amy Y. Hsiao
  • Chunxi Ge
  • Susan Hsiong
  • Nathaniel Huebsch
  • Renny Franceschi
  • David J. Mooney
  • Shuichi Takayama
Article

Abstract

This paper describes a simple reversible hydrogel patterning method for 3D cell culture. Alginate gel is formed in select regions of a microfluidic device through light-triggered release of caged calcium. In the pre-gelled alginate solution, calcium is chelated by DM-nitrophen (DM-n) to prevent cross-linking of alginate. After sufficient UV exposure the caged calcium is released from DM-n causing alginate to cross-link. The effect of using different concentrations of calcium and chelating agents as well as the duration of UV exposure is described. Since the cross-linking is based on calcium concentration, the cross-linked alginate can easily be dissolved by EDTA. We also demonstrate application of this capability to patterned microscale 3D co-culture using endothelial cells and osteoblastic cells in a microchannel.

Keywords

Microfluidics Alginate Hydrogel Endothelial cells Osteoblastic cells Caged calcium 

References

  1. E. Alsberg, K.W. Anderson, R.T. Franceschi, D.J. Mooney, J. Dent. Res. 80, 2025–2029 (2001)CrossRefGoogle Scholar
  2. K. Arcaute, B.K. Mann, R.B. Wicker, Ann. Biomed. Eng. 34, 1429–1441 (2006)CrossRefGoogle Scholar
  3. T. Braschler, R. Johann, M. Heule, L. Metref, P. Rnaud, Lab Chip 5, 553–559 (2005)CrossRefGoogle Scholar
  4. M. Cabodi, N.W. Choi, J.P. Gleghorn, C.S.D. Lee, L.J. Bonassar, A.D.J. Stroock, J. Am. Chem. Soc. 127, 13788–13789 (2005)CrossRefGoogle Scholar
  5. J.-P. Chen, T.-H. Cheng, Polymer 50, 107–116 (2009)CrossRefGoogle Scholar
  6. D. Dendukuri, S.S. Gu, D.C. Pregibon, T.A. Hatton, P.S. Doyle, Lab Chip 7, 818–828 (2007)CrossRefGoogle Scholar
  7. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974–4984 (1998)CrossRefGoogle Scholar
  8. G.C.R. Ellis-Davis, Nat. Methods. 4, 619–628 (2007)CrossRefGoogle Scholar
  9. G.C.R. Ellis-Davis, Meth Enzymol. 360A, 226–238 (2003)CrossRefGoogle Scholar
  10. N.W. Choi, M. Cabodi, B. Held, J.P. Gleghorn, L.J. Bonassar, A.D. Stroock, Nat. Mater. 7, 908–915 (2007)CrossRefGoogle Scholar
  11. E. Cukierman, R. Pankov, D.R. Stevens, K.M. Yamada, Science 294, 1708–1712 (2001)CrossRefGoogle Scholar
  12. C. Fishbach, H.J. Kong, S.X. Hsiong, M.B. Evangelista, W. Yuen, D.J. Mooney, Proc. Natl. Acad. Sci. U.S.A. 106, 399–404 (2009)CrossRefGoogle Scholar
  13. G.T. Franzesi, B. Ni, Y. Ling, A.J. Khademhosseini, J. Am, Chem. Soc. 128, 15064–15065 (2006)CrossRefGoogle Scholar
  14. B.M. Gillette, J.A. Jensen, B. Tang, G.J. Yang, A. Bazargan-Lari, M. Zhong, S.K. Sia, Nat. Mater. 7, 636–640 (2008)CrossRefGoogle Scholar
  15. L.G. Griffith, M.A. Swartz, Nat. Rev. Mol. Cell Biol. 7, 211–224 (2007)CrossRefGoogle Scholar
  16. A.P. Golden, J. Tien, Lab Chip 7, 720–725 (2007)CrossRefGoogle Scholar
  17. M.S. Hahn, J.S. Miller, J.L. West, Adv. Mater. 18, 2679–2684 (2006)CrossRefGoogle Scholar
  18. X. Hao, E.A. Silva, A. Mansson-Broberg, K. Grinnemo, A.J. Siddiqui, G. Dellgren, E. Wardell, L.A. Brodin, D.J. Mooney, C. Sylven, Cardiovasc. Res. 75, 178–185 (2007)CrossRefGoogle Scholar
  19. L. Hughes, D.A. Ledward, J.R. Mitchell, C.J. Summerlin, Texture Studies 11, 247–256 (1980)CrossRefGoogle Scholar
  20. A.M. Kloxin, A.M. Kasko, C.N. Salinas, K.S. Anseth, Science 324, 59–63 (2009)CrossRefGoogle Scholar
  21. W.G. Koh, A. Revzin, M.V. Pishko, Langmuir 18, 2459–2462 (2002)CrossRefGoogle Scholar
  22. H.J. Kong, E. Wong, D.J. Mooney, Macromolecules 36, 4582–4588 (2003)CrossRefGoogle Scholar
  23. H.J. Kong, K.Y. Lee, D.J. Mooney, Polymer 43, 6239–6246 (2002)CrossRefGoogle Scholar
  24. K. Liu, H. Ding, J. Liu, Y. Chen, X. Zhao, Langmuir 22, 9453–9457 (2006)CrossRefGoogle Scholar
  25. C.M. Nelson, M.M. VanDuijn, J.L. Inman, D.A. Fletcher, M.J. Bissell, Science 314, 298–300 (2006)CrossRefGoogle Scholar
  26. C.M. Nelson, J. Tien, Curr. Opin. Biotechnol. 17, 518–523 (2006)CrossRefGoogle Scholar
  27. J.W. Nichol, A. Khademhosseini, Soft Matter 5, 1312–1319 (2009)CrossRefGoogle Scholar
  28. P. Panda, S. Ali, E. Lo, B.G. Chung, T.A. Hatton, A. Khademhosseini, P.S. Doyle, Lab Chip 8, 1056–1061 (2008)CrossRefGoogle Scholar
  29. N.S. Peppas, J.Z. Hily, A. Khademhosseini, R. Langer, Adv. Mater. 18, 1345–1360 (2006)CrossRefGoogle Scholar
  30. B.D. Plouffe, M.A. Brown, R.K. Iyer, M. Radisic, S.K. Murthy, Lab Chip 9, 1507–1510 (2009)CrossRefGoogle Scholar
  31. J. Rettig, E. Neher, Science 298, 781–785 (2002)CrossRefGoogle Scholar
  32. J.A. Rowley, G. Madlambayan, D.J. Mooney, Biomaterials 20, 45–53 (1999)CrossRefGoogle Scholar
  33. R.W. Sands, D.J. Mooney, Curr. Opin. Biotechnol. 18, 448–453 (2007)CrossRefGoogle Scholar
  34. S.R. Sershen, G.A. Mensing, M. Ng, N.J. Halas, D.J. Beebe, J.L. West, Adv. Mat. 17, 1366–1368 (2005)Google Scholar
  35. J.H. Sung, M.L. Shuler, Lab Chip 9, 1385–1394 (2009)CrossRefGoogle Scholar
  36. W. Tan, T.A. Deasi, Biomaterials 25, 1355–1364 (2004)CrossRefGoogle Scholar
  37. M.D. Tang, A.P. Golden, J. Tien, J. Am. Chem. Soc. 125, 12988–12989 (2003)CrossRefGoogle Scholar
  38. V.L. Tsang, A.A. Chen, L.M. Cho, K.D. Jadin, R.L. Sah, S. DeLong, J.L. West, S.N. Bhatia, FASEB J. 21, 790–801 (2007)CrossRefGoogle Scholar
  39. A.P. Wong, R. Perez-Castillejos, J.C. Love, G.M. Whitesides, Biomaterials 29, 1853–1861 (2008)CrossRefGoogle Scholar
  40. G. Xiao, Y. Cui, P. Ducy, G. Karsenty, R.T. Franceschi, Mol. Endo. 11, 1103–1113 (1997)CrossRefGoogle Scholar
  41. K.Y. Yamada, E. Cukierman, Cell 130, 601–610 (2007)CrossRefGoogle Scholar
  42. H. Yan, A. Nyjnen, J. Ruokolainen, D. Farrar, J.E. Gough, A. Saiani, A.F. Millar, Faraday Discuss 139, 71–84 (2008a)CrossRefGoogle Scholar
  43. H. Yan, Y. Zhao, C. Qiu, H. Wu, Sens. Actuators, B 132, 20–25 (2008b)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Bor-han Chueh
    • 1
    • 6
  • Ying Zheng
    • 1
  • Yu-suke Torisawa
    • 1
  • Amy Y. Hsiao
    • 1
  • Chunxi Ge
    • 2
  • Susan Hsiong
    • 3
  • Nathaniel Huebsch
    • 3
    • 4
  • Renny Franceschi
    • 2
  • David J. Mooney
    • 3
  • Shuichi Takayama
    • 1
    • 5
  1. 1.Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  2. 2.Periodontics and Oral MedicineUniversity of MichiganAnn ArborUSA
  3. 3.School of Engineering and Applied ScienceHarvard UniversityCambridgeUSA
  4. 4.Harvard-MIT Division of Health Sciences and TechnologyCambridgeUSA
  5. 5.Macromolecular Science & Engineering programUniversity of MichiganAnn ArborUSA
  6. 6.Department of ChemistryStanford UniversityStanfordUSA

Personalised recommendations