Biomedical Microdevices

, Volume 12, Issue 1, pp 107–114 | Cite as

Water-assisted CO2 laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application

  • C. K. Chung
  • H. C. Chang
  • T. R. Shih
  • S. L. Lin
  • E. J. Hsiao
  • Y. S. Chen
  • E. C. Chang
  • C. C. Chen
  • C. C. Lin
Article

Abstract

The glass-based microfluidic chip has widely been applied to the lab-on-a-chip for clotting tests. Here, we have demonstrated a capillary driven flow chip using the water-assisted CO2 laser ablation for crackless fluidic channels and holes as well as the modified low-temperature glass bonding with assistance of adhesive polymer film at 300°C. Effect of water depth on the laser ablation of glass quality was investigated. The surface hydrophilic property of glass and polymer film was measured by static contact angle method for hydrophilicity examination in comparison with the conventional polydimethylsiloxane (PDMS) material. Both low-viscosity deionized water and high-viscosity whole blood were used for testing the capillary-driving flow behavior. The preliminary coagulation testing in the Y-channel chip was also performed using whole blood and CaCl2 solution. The water-assisted CO2 laser processing can cool down glass during ablation for less temperature gradient to eliminate the crack. The modified glass bonding can simplify the conventional complex fabrication procedure of glass chips, such as high-temperature bonding, long consuming time and high cost. Moreover, the developed fluidic glass chip has the merit of hydrophilic behavior conquering the problem of traditional hydrophobic recovery of polymer fluidic chips and shows the ability to drive high-viscosity bio-fluids.

Keywords

Glass chip Microfluidic CO2 laser Hydrophilic Blood 

References

  1. G. Allcock, P.E. Dyer, G. Elliner, H.V. Snelling, Experimental observations and analysis of CO2 laser-induced microcracking of glass. J. Appl. Phys. 78, 7295–7303 (1995)CrossRefGoogle Scholar
  2. A. Baram, M. Naftali, Dry etching of deep cavities in Pyrex for MEMS applications using standard lithography. J. Micromechanics Microengineering 16, 2287–2291 (2006)CrossRefGoogle Scholar
  3. A. Ben-Yakar, A. Harkin, J. Ashmore, R.L. Byer, H.A. Stone, Thermal and fluid processes of a thin melt zone during femtosecond laser ablation of glass: the formation of rims by single laser pulses. J. Phys. D 40, 1447–1459 (2007)CrossRefGoogle Scholar
  4. S. Bouaidat, O. Hansen, H. Bruus, C. Berendsen, N.K.B. Madsen, P. Thomsen, A. Wolff, J. Jonsmann, Surface-directed capillary system; theory, experiments and applications. Lab Chip 5, 827–883 (2005)CrossRefGoogle Scholar
  5. C.K. Chung, Y.C. Lin, G.R. Huang, Bulge formation and improvement of the polymer in CO2 laser micromachining. J. Micromech. Microeng. 15, 1878–1884 (2005)CrossRefGoogle Scholar
  6. C.K. Chung, Y.C. Sung, G.R. Huang, E.J. Hsiao, W.H. Lin, S.L. Lin, Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing. Appl. Phys. A 94, 927–932 (2009)CrossRefGoogle Scholar
  7. A. Daridon, V. Fascio, J. Lichtenberg, R. Wutrich, H. Langen, E. Verpoorte, N.F. de Rooij, Multi-layer microfluidic glass chips for microanalytical applications. J. Anal. Chem. 371, 261 (2001)CrossRefGoogle Scholar
  8. D.T. Eddington, J.P. Puccinelli, D.J. Beebe, Extended curing and reduced hydrophobic recovery of Polydimethylsiloxane. Sens. Actuators B 114, 170 (2006)CrossRefGoogle Scholar
  9. V.I. Furdui, J.K. Kariuki, D.J. Harrison, Microfabricated electrolysis pump system for isolating rare cells in blood. J. Micromechanics Microengineering 13, S164–S170 (2003)CrossRefGoogle Scholar
  10. G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm to 200-mm wavelength region. Appl. Opt. 12, 555–563 (1973)CrossRefGoogle Scholar
  11. Y. Hanada, K. Sugioka, H. Kawano, I.S. Ishikawa, A. Miyawaki, K. Midorikawa, Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed. Microdev. 10, 403–410 (2008)CrossRefGoogle Scholar
  12. C. Iliescu, J. Miao, F.E.H. Taya, Stress control in masking layers for deep wet micromachining of Pyrex glass. Sens. Actuators A 117, 286–292 (2005)CrossRefGoogle Scholar
  13. D.S. Kim, S.H. Lee, C.H. Ahn, J.Y. Lee, T.H. Kwon, Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 6, 794 (2006a)CrossRefGoogle Scholar
  14. D.S. Kim, S.H. Lee, C.H. Ahn, J.Y. Lee, T.H. Kwon, Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 6, 794–802 (2006b)CrossRefGoogle Scholar
  15. H. Ogura, Y. Yoshida, Hole drilling of glass substrates with a CO2 laser. Jpn. J. Appl. Phys. 42, 2881–2886 (2003)CrossRefGoogle Scholar
  16. H. Sakai, S. Takeoka, S.I. Park, T. Kose, Y. Izumi, A. Yoshizu, H. Nishide, K. Kobayashi, E. Tsuchida, Surface-modification of hemoglobin vesicles with polyethyleneglycol and effects on aggregation, viscosity, and blood flow during 90%-exchange transfusion in anesthetized rats. Bioconjug. Chem. 8, 15 (1997)CrossRefGoogle Scholar
  17. T.P. Vikinge, K.M. Hansson, J. Benesch, K. Johansen, M. Ranby, T.L. Lindahl, B. Liedberg, I. Lundström, P. Tengvall, J. Biomed. Opt. 5, 51–55 (2000)CrossRefGoogle Scholar
  18. F. Walther, P. Davydovskaya, S. Zucher, M. Kaiser, H. Herberg, A.M. Gigler, R.W. Stark, Stability of the hydrophilic behavior of oxygen plasma activated SU-8. J. Micromech. Microeng. 17, 524 (2007)CrossRefGoogle Scholar
  19. P.K. Yuen, L.J. Kricka, P. Fortina, N.J. Panaro, T. Sakazume, P. Wilding, Microchip module for blood sample preparation and nucleic acid amplification reactions. Genome Res. 11, 405–412 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • C. K. Chung
    • 1
    • 2
  • H. C. Chang
    • 3
  • T. R. Shih
    • 1
  • S. L. Lin
    • 1
  • E. J. Hsiao
    • 1
  • Y. S. Chen
    • 1
  • E. C. Chang
    • 2
  • C. C. Chen
    • 3
  • C. C. Lin
    • 3
  1. 1.Department of Mechanical Engineering, Center for Micro/Nano Science and TechnologyNational Cheng Kung UniversityTainanTaiwan
  2. 2.Institute of Nanotechnology and Microsystems EngineeringNational Cheng Kung UniversityTainanTaiwan
  3. 3.Institute of Bio-medical EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations