Skip to main content
Log in

Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Functional endothelialized networks constitute a critical building block for vascularized replacement tissues, organ assist devices, and laboratory tools for in vitro discovery and evaluation of new therapeutic compounds. Progress towards realization of these functional artificial vasculatures has been gated by limitations associated with the mechanical and surface chemical properties of commonly used microfluidic substrate materials and by the geometry of the microchannels produced using conventional fabrication techniques. Here we report on a method for constructing microvascular networks from polystyrene substrates commonly used for tissue culture, built with circular cross-sections and smooth transitions at bifurcations. Silicon master molds are constructed using an electroplating process that results in semi-circular channel cross-sections with smoothly varying radii. These master molds are used to emboss polystyrene sheets which are then joined to form closed bifurcated channel networks with circular cross-sections. The mechanical and surface chemical properties of these polystyrene microvascular network structures enable culture of endothelial cells along the inner lumen. Endothelial cell viability was assessed, documenting nearly confluent monolayers within 3D microfabricated channel networks with rounded cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • S.N. Bhatia, C.S. Chen, Biomedical Microdevices 1, 131 (1999)

    Article  Google Scholar 

  • J.T. Borenstein, H. Terai, K.R. King, E.J. Weinberg, M.R. Kaazempur-Mofrad, J.P. Vacanti, Biomed Microdevices 4, 167 (2002)

    Article  Google Scholar 

  • K. A. Burgess, H.-H. Hu, W. R. Wagner, W. J. Federspiel, Biomedical Microdevices doi:10.1007/s10544-008-9215-2, (2008)

  • J.P. Camp, T. Stokol, M.L. Shuler, Biomed Microdevices 10, 179–186 (2008)

    Article  Google Scholar 

  • A. Carraro, W.-M. Hsu et al., Biomedical Microdevices 10, 795 (2008)

    Article  Google Scholar 

  • G. Dai, M.R. Kaazempur-Mofrad, S. Natarajan, Y. Zhang, S. Vaughn, B.R. Glackman, R.D. Kamm, G. Garcia-Cardeña, M.A. Gimbrone, Proc Nat Acad Sci 101, 14871 (2004)

    Article  Google Scholar 

  • T.A. Desai, Med Eng Phys 22, 595 (2000)

    Article  Google Scholar 

  • D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal Chem 70, 4974 (1998)

    Article  Google Scholar 

  • C. Fidkowski, M.R. Kaazempur-Mofrad, J.T. Borenstein, J.P. Vacanti, R. Langer, Y. Wang, Tissue Eng 11, 302 (2005)

    Article  Google Scholar 

  • G. García-Cardeña, J. Comander, K.R. Anderson, B.R. Blackman, M.A. Gimbrone Jr., Proc Natl Acad Sci USA 98, 4478 (2001)

    Article  Google Scholar 

  • S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmuller, K.F. Weibezahn, A. Welle, Biomed Microdevices 8, 191 (2006)

    Article  Google Scholar 

  • J. Green, T. Kniazeva, M. Abedi, D.S. Sokhey, M.E. Taslim, S.K. Murthy, Lab Chip 9, 677 (2009)

    Article  Google Scholar 

  • M. Heckele, W.K. Schomburg, J. Micromech. Microeng 14: R1, 7776 (2007)

    Google Scholar 

  • S. Hu, X. Ren, M. Bachman, C.E. Sims, G.P. Li, N.L. Allbritton, Langmuir 20, 5569 (2004)

    Article  Google Scholar 

  • X. Hu, W. Lui, L. Cui, M. Wang, Y. Cao, Tissue Eng 11, 1710 (2005)

    Article  Google Scholar 

  • B.-H. Jo, D.J. Beebe, SPIE 3877, 222 (1999)

    Article  Google Scholar 

  • M. R. Kaazempur-Mofrad, N. J. Krebs, J. P. Vacanti, J. T. Borenstein, Proceedings of the 2004 Hilton Head Sensors and Actuators Conference (2004)

  • A. Khademhosseini, R. Langer, J.T. Borenstein, J.P. Vacanti, Proc Nat Acad Sci 103, 2480 (2006)

    Article  Google Scholar 

  • K.R. King, C.J. Wang, M.R. Kaazempur-Mofrad, J.P. Vacanti, J.T. Borenstein, Adv Mater 16, 2007 (2004)

    Article  Google Scholar 

  • D.A. LaVan, P.M. George, R. Langer, Angew Chem Int Ed 42, 1262 (2003)

    Article  Google Scholar 

  • E. Leclerc, Y. Sakai, T. Fujii, Biomed Microdevices 5, 109 (2003)

    Article  Google Scholar 

  • D. Lim, Y. Kamotani, B. Cho, J. Mazumder, S. Takayama, Lab Chip 3, 318 (2003)

    Article  Google Scholar 

  • R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K.-I. Tsubota, Y. Imai, T. Yamaguchi, Biomed Microdevices 10, 153 (2008)

    Article  Google Scholar 

  • H. Lu, L.Y. Koo, W.M. Wang, D.A. Lauffenburger, L.G. Griffith, K.F. Jensen, Anal Chem 76, 5257 (2004)

    Article  Google Scholar 

  • T.C. Marentis, J.P. Vacanti, J. Hsiao, J.T. Borenstein, IEEE JMEMS 2009, in press.

  • H.L. Prichard, W.M. Reichert, B. Klitzman, Biomaterials 28, 936 (2007)

    Article  Google Scholar 

  • S.R. Quake, A. Scherer, Science 290, 1536 (2000)

    Article  Google Scholar 

  • G.M. Riha, P.H. Lin, A.B. Lumsden, Q. Yao, C. Chen, Ann Biomed Eng 33, 772 (2005)

    Article  Google Scholar 

  • M.K. Runyon, C.J. Kastrup, B.L. Johnson-Kemer, T.G. Ha, R.F. Ismagilov, J Am Chem Soc 130, 3458 (2008)

    Article  Google Scholar 

  • C.-T. Seo, C.-H. Bae, D.-S. Eun, J.-K. Shin, J.-H. Lee, Jpn J Appl Phys 43, 7773 (2004)

    Article  Google Scholar 

  • F. Shen, C.L. Kastrup, R.R. Ismagilov, Thrombosis Res 122(Suppl. 1), S27 (2008)

    Article  Google Scholar 

  • J.W. Song, W. Gu, N. Futai, K.A. Warner, J.E. Nor, S. Takayama, Anal Chem 77, 3993 (2005)

    Article  Google Scholar 

  • J.P. Vacanti, R. Langer, The Lancet 354(Suppl I), 32SI (1999)

    Google Scholar 

  • X.F. Walboomers, H.J. Croes, L.A. Ginsel, J.A. Jansen, Biomaterials 19, 1861 (1998)

    Article  Google Scholar 

  • G.-J. Wang, K.-H. Ho, S.-H. Hsu, K.-P. Wang, Biomed Microdevices 9, 657–663 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the MEMS Technology Group at the Draper Laboratory for fabrication of master molds and use of facilities, and funding provided by Charles Stark Draper Laboratory and Brigham and Women’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Borenstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borenstein, J.T., Tupper, M.M., Mack, P.J. et al. Functional endothelialized microvascular networks with circular cross-sections in a tissue culture substrate. Biomed Microdevices 12, 71–79 (2010). https://doi.org/10.1007/s10544-009-9361-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9361-1

Keywords

Navigation