Biomedical Microdevices

, Volume 12, Issue 1, pp 41–48 | Cite as

Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio

  • Kuniharu TakeiEmail author
  • Takeshi Kawano
  • Takahiro Kawashima
  • Kazuaki Sawada
  • Hidekazu Kaneko
  • Makoto Ishida


We report on the development of a microtube electrode array as a neural interface device. To combine the desired properties for the neural interface device, such as low invasiveness with a small needle and a good signal-to-noise ratio in neural recordings, we applied the structure of a glass pipette electrode to each microtube electrode. The device was fabricated as sub-5-μm-diameter out-of-plane silicon dioxide microtube arrays using silicon microneedle templates, which are grown by the selective vapor–liquid–solid method. The microtubes had inner diameters of 1.9–6.4 µm and a length of 25 µm. Impedances ranged from 220 kΩ to 1.55 MΩ, which are less than those for conventional microneedles. In addition, the microtube electrodes had less signal attenuation than conventional microneedle electrodes. We confirmed that the effects of parasitic capacitances between neighboring microtubes and channels were sufficiently small using a test signal. Finally, neural responses evoked from a rat peripheral nerve were recorded in vivo using a microtube electrode to confirm that this type of electrode can be used for both electrophysiological measurements and as a neural interface device.


Microtube Microneedle Array Extracellular recording Low invasiveness High signal-to-noise ratio 



We thank Mr. M. Ashiki at Toyohashi University of Technology for his assistance with the fabrication process. This work was supported by a grant from the Global COE Program “Frontiers of Intelligent Sensing,” a Grant-in-Aid for Scientific Research S (MI), a JSPS fellowship (KT), a CREST project of the Japan Science and Technology Agency (JST) (MI), a grant from the National Institute of Advanced Industrial Science and Technology (HK), and a Strategic Research Program for Brain Sciences (SRPBS) (TK).


  1. R. Biran, D.C. Martin, P.A. Tresco, Exp. Neurol. 195, 115 (2005)CrossRefGoogle Scholar
  2. P.K. Campbell, K.E. Jones, R.J. Huber, K.W. Horch, R.A. Normann, IEEE Trans. Biomed. Eng. 38, 758 (1991)CrossRefGoogle Scholar
  3. K.C. Cheung, Biomed Microdevices 9, 923 (2007)CrossRefGoogle Scholar
  4. D.J. Edell, V.V. Toi, V.M. McNeil, L.D. Clark, IEEE Trans. Biomed. Eng. 39, 635 (1992)CrossRefGoogle Scholar
  5. N.A. Fitzsimmons, W. Drake, T.L. Hanson, M.A. Lebedev, M.A.L. Nicolelis, J. Neurosci. 27, 5593 (2007)CrossRefGoogle Scholar
  6. L.A. Geddes, R. Roeder, Ann. Biomed. Eng. 31, 879 (2003)CrossRefGoogle Scholar
  7. L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, J.P. Donoghue, Nature 442, 164 (2006)CrossRefGoogle Scholar
  8. Y. Kato, H. Takao, K. Sawada, M. Ishida, Jpn. J. Appl. Phys. 43, 6848 (2004)CrossRefGoogle Scholar
  9. Y. Kato, H. Takao, K. Sawada, M. Ishida, Jpn. J. Appl. Phys. 45, L108 (2006)CrossRefGoogle Scholar
  10. T. Kawano, Y. Kato, R. Tani, H. Takao, K. Sawada, M. Ishida, IEEE Trans. Electron Devices 51, 415 (2004)CrossRefGoogle Scholar
  11. S. Kim, R. Bhandari, M. Klein, S. Negi, L. Rieth, P. Tathireddy, M. Toepper, H. Oppermann, F. Solzbacher, Biomed. Microdevices 11, 453 (2009)CrossRefGoogle Scholar
  12. S. Lee, K. Limkrailassiri, Y. Gao, C. Chang, L. Lin, proc. int. conf. microelectromechanical systems (MEMS 2007), p. 61 (2007)Google Scholar
  13. K.A. Ludwig, R.M. Miriani, N.B. Langhals, M.D. Joseph, D.J. Anderson, D.R. Kipke, J. Neurophysiol. 101, 1679 (2009)CrossRefGoogle Scholar
  14. K. Mayumi, K. Takei, T. Kawashima, T. Kawano, H. Takao, K. Sawada, M. Ishida, Proc. Asia-Pacific Conerence of Transducers and Micro-Nano Technology (APCOT 2008), p.113 (2008).Google Scholar
  15. W.I. Park, G. Zheng, X. Jiang, B. Tian, C.M. Lieber, Nano Lett. 8, 3004 (2008)CrossRefGoogle Scholar
  16. V.S. Polikov, P.A. Tresco, W.M. Reichert, J. Neurosci. Methods 148, 1 (2005)CrossRefGoogle Scholar
  17. D.H. Szarowski, M.D. Andersen, S. Retterer, A.J. Spence, M. Isaacson, H.G. Craighead, J.N. Turner, W. Shain, Brain Res. 983, 23 (2003)CrossRefGoogle Scholar
  18. K. Takei, T. Kawashima, K. Sawada, M. Ishida, IEEE Sens. J. 8, 470 (2008a)CrossRefGoogle Scholar
  19. K. Takei, T. Kawashima, T. Kawano, K. Sawada, M. Ishida, J. Micromech. Microeng. 18, 035033 (2008b)CrossRefGoogle Scholar
  20. K. Takei, T. Kawashima, T. Kawano, H. Kaneko, K. Sawada, M. Ishida, Biomed. Microdevices 11, 539 (2009)CrossRefGoogle Scholar
  21. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)CrossRefGoogle Scholar
  22. K.D. Wise, J.B. Angell, A. Starr, IEEE Trans. Biomed. Eng. BME-17, 238 (1970)CrossRefGoogle Scholar
  23. K.D. Wise, D.J. Anderson, J.F. Hetke, D.R. Kipke, K. Najafi, Proc. IEEE 92, 76 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kuniharu Takei
    • 1
    Email author
  • Takeshi Kawano
    • 1
  • Takahiro Kawashima
    • 2
  • Kazuaki Sawada
    • 1
  • Hidekazu Kaneko
    • 3
  • Makoto Ishida
    • 1
  1. 1.Department of Electrical and Electronic EngineeringToyohashi University of TechnologyToyohashiJapan
  2. 2.Department of Production Systems EngineeringToyohashi University of TechnologyToyohashiJapan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations