Biomedical Microdevices

, Volume 12, Issue 1, pp 23–34

Experimental and numerical characterization of magnetophoretic separation for MEMS-based biosensor applications

  • Nipu Modak
  • Dinabandhu Kejriwal
  • Krishanu Nandy
  • Amitava Datta
  • Ranjan Ganguly
Article

Abstract

Magnetophoretic isolation of biochemical and organic entities in a microfluidic environment is a popular tool for a wide range of bioMEMS applications, including biosensors. An experimental and numerical analysis of magnetophoretic capture of magnetic microspheres in a microfluidic channel under the influence of an external field is investigated. For a given microfluidic geometry, the operating conditions for marginal capture is found to be interrelated in such a manner that a unique critical capture parameter \( \Pi _{{{\text{crit}}}} = {{\left( {I_{{{\text{crit}}}} {\text{a}}} \right)}^{2} } \mathord{\left/ {\vphantom {{{\left( {I_{{{\text{crit}}}} {\text{a}}} \right)}^{2} } {{\text{Q}}\eta }}} \right. \kern-\nulldelimiterspace} {{\text{Q}}\eta } \), that is proportional to the ratio of the magnetic force to viscous force, can be identified. Influences of the flow rate, magnetic field and other parameters on the particle trajectories in the microfluidic channel are investigated both numerically and through bright-field imaging under a microscope. Like the event of critical capture, particle trajectories are also found to be guided by a similar parameter, π. Magnetophoretic capture efficiency of the device is also evaluated as a function of a nondimensional number \( \Pi ^{*} = {\chi {\text{P}}^{2} {\text{a}}^{2} } \mathord{\left/ {\vphantom {{\chi {\text{P}}^{2} {\text{a}}^{2} } {{\left( {{\text{U}}_{0} \eta {\text{h}}^{5} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {{\text{U}}_{0} \eta {\text{h}}^{5} } \right)}} \), when both numerical and experimental results are found to agree reasonably well. Results of this investigation can be applied for the selection of the operating parameters and for prediction of device performance of practical microfluidic separators.

Keywords

BioMEMS Magnetic microspheres Microfluidic Magnetophoretic separation 

Nomenclature

a

Particle radius (m)

CE

Capture efficiency (dimensionless)

Open image in new window

Unit vectors along r and \( \phi \)

Fd

Drag force by the fluid on a particle (N)

Fm

Magnetic force on a particle (N)

h

Height of the straight channel, and the straight section of T-channel (m)

H

Magnetic field (A/m)

Kwall, Kwall, Kwall

Wall drag multipliers

L

Channel length (m)

lw

Distance of a particle from the wall

p

Pressure (Pa)

P

Dipole strength (per unit depth of a dipole line) (A-m)

Pix

Pixel value (Arbitrary unit)

Q

Flow rate (ml/h)

r

Position vector (m)

Re

Reynolds number (dimensionless)

dtL

Time step for integration for Lagrangian tracking (s)

t

Time (s)

U

Slip velocity between particle and fluid (m/s)

Umax

Maximum flow velocity (m/s)

V

Velocity of fluid (m/s)

Vp

Velocity of particle (m/s)

(x, y)

Coordinate references

(xmag,ymag)

Coordinates of the virtual origin of the dipole line (m)

Symbols

χ

Effective magnetic susceptibility of magnetic microspheres

χi

Intrinsic magnetic susceptibility of magnetic microspheres

η

Viscosity of fluid (N-s/m2)

λ

Particle number density (m−3)

μ0

permeability of vacuum (=1.257 × 10−6 N/A2)

\( \phi \)

Angular position

Π

\( {{\left( {{\text{I}}^{2} {\text{P}}^{2} } \right)}} \mathord{\left/ {\vphantom {{{\left( {{\text{I}}^{2} {\text{P}}^{2} } \right)}} {{\left( {\eta {\text{Q}}} \right)}{\left( {{\text{m}}^{5} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {\eta {\text{Q}}} \right)}{\left( {{\text{m}}^{5} } \right)}} \)

Π*

\( {{\left( {a^{2} \chi _{{{\text{eff}}}} {\text{P}}^{2} } \right)}} \mathord{\left/ {\vphantom {{{\left( {a^{2} \chi _{{{\text{eff}}}} {\text{P}}^{2} } \right)}} {{\left( {\eta {\text{U}}_{{{\text{av}}}} {\text{h}}^{5} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {\eta {\text{U}}_{{{\text{av}}}} {\text{h}}^{5} } \right)}} \)

ρ

Density of fluid (kg/m3)

\( \underline{\underline \tau } \)

Stress tensor (N/m2)

ξ

a/lw

Subscript

cr

Corresponding to critical or marginal capture

Reference

  1. A. Beyzavi, N.-T. Nguyen, J. Micromech. Microengg. 18, 095018 (2008)CrossRefGoogle Scholar
  2. D.D. Carlo, D. Irimia, R.G. Tompkins, M. Toner, PNAS 104, 18892 (2007)CrossRefGoogle Scholar
  3. H. Chen, M.D. Kaminskic, A.D. Ebner, J.A. Ritter, A.J. Rosengart, J. Magn. Magn. Mater. 313, 127 (2007)CrossRefGoogle Scholar
  4. R. Clift, J.R. Grace, M.E. Weber, Bubbles Drops and Particles (Academic Press, New York, 1978)Google Scholar
  5. P.S. Dittrich, K. Tachikawa, A. Manz, Anal. Chem. 78, 3887 (2006)CrossRefGoogle Scholar
  6. P.S. Doyle, J. Bibette, A. Bancaud, J.-L. Viovy, Science 295, 2237 (2002)CrossRefGoogle Scholar
  7. G.M. Faeth, Prog. Energy Combust. Sci. 9, 1 (1983)CrossRefGoogle Scholar
  8. E.P. Furlani, J. Appl. Phys. 99, 024912 (2006)CrossRefGoogle Scholar
  9. E.P. Furlani, J. Phys. D: Appl. Phys. 40, 1313 (2007)CrossRefGoogle Scholar
  10. E.P. Furlani, Y. Sahoo, J. Phys. D: Appl. Phys. 39, 1724 (2006)CrossRefGoogle Scholar
  11. R. Ganguly, I.K. Puri, Advances Appl. Mech. 41, 293 (2007)CrossRefGoogle Scholar
  12. M.A.M. Gijs, Microfluid. Nanofluid. 1, 22 (2004)Google Scholar
  13. C.W. Hirt, B.D. Nicols, N.C. Romero, Los Alamos Scientific Laboratory Report LA-5852 Los Alamos, New Mexico (1975)Google Scholar
  14. D.W. Inglis, R. Riehn, R.H. Austin, J.C. Sturm, Appl. Phys. Lett. 85, 5093 (2004)CrossRefGoogle Scholar
  15. G. Jiang, D.J. Harrison, Analyst 125, 2176 (2000)CrossRefGoogle Scholar
  16. Z. Jiang, J. Llandro, T. Mitrelias, J.A.C. Bland, J. Appl. Phys. 99, 08S105 (2006)CrossRefGoogle Scholar
  17. Y. Kang, D. Li, S.A. Kalams, J.E. Eid, Biomed. Microdevices 10, 243 (2008)CrossRefGoogle Scholar
  18. T. Lund-Olesen, H. Bruus, M.F. Hansen, Biomed. Microdevices 9, 195 (2007)CrossRefGoogle Scholar
  19. K.E. McCloskey, J.J. Chalmers, M. Zborowski, Anal. Chem. 75, 6668 (2003)CrossRefGoogle Scholar
  20. C. Mikkelsen, H. Bruus, Lab Chip 5, 1293 (2005)CrossRefGoogle Scholar
  21. N. Modak, A. Datta, R. Ganguly, Microfluid. Nanofluid. 6, 647 (2009)CrossRefGoogle Scholar
  22. N. Morozov, TYa Morozova, Analytica Chimia Acta 564, 40 (2006)CrossRefGoogle Scholar
  23. K. Nandy, S. Chaudhuri, R. Ganguly, I.K. Puri, J. Magn. Magn. Mater. 320, 1398 (2008)Google Scholar
  24. N. Pamme, Lab Chip 7, 1644 (2007)CrossRefGoogle Scholar
  25. A. Rida, M.A.M. Gijs, Appl. Phys. Lett. 85, 4986 (2004)CrossRefGoogle Scholar
  26. D-b Seo, Y. Agca, Z.C. Feng, J.K. Critser, Microfluid. Nanofluid. 3, 561 (2007)CrossRefGoogle Scholar
  27. A. Sinha, R. Ganguly, A.K. De, I.K. Puri, Phys. Fluids 19, 117102 (2007)CrossRefGoogle Scholar
  28. K. Smistrup, B.G. Kjeldsen, J.L. Reimers, M. Dufva, J. Peterson, M.F. Hansen, Lab Chip 5, 1315 (2005a)CrossRefGoogle Scholar
  29. K. Smistrup, O. Hansen, H. Bruus, M.F. Hansen, J. Magn. Magn. Mater. 293, 597 (2005b)CrossRefGoogle Scholar
  30. Y. Wang, J. Zhe, B.T.F. Chung, P. Dutta, Microfluid. Nanofluid. 4, 375 (2008)CrossRefGoogle Scholar
  31. G.M. Whitesides, R.J. Kazlauskas, L. Josephson, Trends Biotechnol. 1, 144 (1983)CrossRefGoogle Scholar
  32. N. Xia, T.P. Hunt, B.T. Mayers, E. Alsberg, G.M. Whitesides, R.M. Westervelt, D.E. Ingber, Biomed. Microdevices 8, 299 (2006)CrossRefGoogle Scholar
  33. X. Xuan, D. Li, Electrophoresis 26, 3552 (2005)CrossRefGoogle Scholar
  34. B.B. Yellen, G. Friedman, Langmuir 20, 2553 (2004)CrossRefGoogle Scholar
  35. M. Zborowski, C.B. Fuh, R. Green, L. Sun, J.J. Chamlers, Anal. Chem. 67, 3702 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Nipu Modak
    • 1
  • Dinabandhu Kejriwal
    • 2
  • Krishanu Nandy
    • 2
  • Amitava Datta
    • 2
  • Ranjan Ganguly
    • 2
  1. 1.Department of Mechanical EngineeringJadavpur UniversityKolkataIndia
  2. 2.Department of Power EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations