Biomedical Microdevices

, Volume 12, Issue 1, pp 13–21 | Cite as

Targeted cell adhesion on selectively micropatterned polymer arrays on a poly(dimethylsiloxane) surface

  • Linzhi Tang
  • Junhong Min
  • Eun-Cheol Lee
  • Jong Sung Kim
  • Nae Yoon Lee


Herein, we introduce the fabrication of polymer micropattern arrays on a chemically inert poly(dimethylsiloxane) (PDMS) surface and employ them for the selective adhesion of cells. To fabricate the micropattern arrays, a mercapto-ester—based photocurable adhesive was coated onto a mercaptosilane—coated PDMS surface and photopolymerized using a photomask to obtain patterned arrays at the microscale level. Robust polymer patterns, 380 µm in diameter, were successfully fabricated onto a PDMS surface, and cells were selectively targeted toward the patterned regions. Next, the performance of the cell adhesion was observed by anchoring cell adhesive linker, an RGD oligopeptide, on the surface of the mercapto-ester—based adhesive-cured layer. The successful anchoring of the RGD linker was confirmed through various surface characterizations such as water contact angle measurement, XPS analysis, FT-IR analysis, and AFM measurement. The micropatterning of a photocurable adhesive onto a PDMS surface can provide high structural rigidity, a highly–adhesive surface, and a physical pathway for selective cell adhesion, while the incorporated polymer micropattern arrays inside a PDMS microfluidic device can serve as a microfluidic platform for disease diagnoses and high-throughput drug screening.


Polymer micropattern array Mercapto-ester adhesive Mercaptosilane Photopolymerization Cell adhesion RGD linker 



This work was supported by the GRRC program of Gyeonggi province (GRRC Kyungwon 2009-A01, Development of Microfluidic Devices for the Diagnosis of Disease) and the Kyungwon University Research Fund in 2009.


  1. J.A. Barron, P. Wu, H.D. Ladouceur, B.R. Ringeisen, Biological laser printing: A novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed. Microdevices 6, 139–147 (2004)CrossRefGoogle Scholar
  2. J.A. Burdick, A. Khademhosseini, R. Langer, Fabrication of gradient hydrogels using a microfluidics/photopolymerization process. Langmuir 20, 5153–5156 (2004)CrossRefGoogle Scholar
  3. V.J. Cadarso, A. Llobera, G. Villanueva, V. Seidemann, S. Büttgenbach, J.A. Plaza, Polymer microoptoelectromechanical systems: Accelerometers and variable optical attenuators, Sens. Actuator, A 145–146, 147–153 (2008)CrossRefGoogle Scholar
  4. S.C. Calaghan, E. White, S. Bedut, J.-Y. Le Guennec, Cytochalasin D reduces Ca2+ sensitivity and maximum tension via interactions with myofilaments in skinned rat cardiac myocytes. J. Physiol. 529(2), 405–411 (2000)CrossRefGoogle Scholar
  5. E. Cimetta, S. Pizzato, S. Bollini, E. Serena, P. De Coppi, N. Elvassore, Production of arrays of cardiac and skeletal muscle myofibers by micropatterning techniques on a soft substrate. Biomed. Microdevices 11, 389–400 (2009)CrossRefGoogle Scholar
  6. J. Fukuda, Y. Sakai, K. Nakazawa, Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials 27, 1061–1070 (2006)CrossRefGoogle Scholar
  7. M. Goto, T. Tsukahara, K. Sato, T. Kitamori, Micro- and nanometer-scale patterned surface in a microchannel for cell culture in microfluidic devices. Anal. Bioanal. Chem. 390, 817–823 (2008)CrossRefGoogle Scholar
  8. D.S. Gray, J. Tien, C.S. Chen, Repositioning of cells by mechanotaxis on surfaces with micropatterned Young’s modulus. J. Biomed. Mater. Res. 66A, 605–614 (2003)CrossRefGoogle Scholar
  9. Y. Ito, Surface micropatterning to regulate cell functions. Biomaterials 20, 2333–2342 (1999)CrossRefGoogle Scholar
  10. K. Itoga, J. Kobayashi, M. Yamato, A. Kikuchi, T. Okano, Maskless liquid-crystal-display projection photolithography for improved design flexibility of cellular micropatterns. Biomaterials 27, 3005–3009 (2006)CrossRefGoogle Scholar
  11. X. Jiang, S. Takayama, X. Qian, E. Ostuni, H. Wu, N. Bowden, P. LeDuc, D.E. Ingber, G.M. Whitesides, Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir 18, 3273–3280 (2002)CrossRefGoogle Scholar
  12. J.N. Lee, X. Jiang, D. Ryan, G.M. Whitesides, Compatibility of mammalian cells on surfaces of poly(dimethylsiloxane). Langmuir 20, 11684–11691 (2004)CrossRefGoogle Scholar
  13. N.Y. Lee, J.R. Lim, Y.S. Kim, Selective patterning and immobilization of biomolecules within precisely-defined micro-reservoirs. Biosens. Bioelectron. 21, 2188–2193 (2006a)CrossRefGoogle Scholar
  14. N.Y. Lee, J.R. Lim, M.J. Lee, S. Park, Y.S. Kim, Multilayer transfer printing on microreservoir-patterned substrate employing hydrophilic composite mold for selective immobilization of biomolecules. Langmuir 22, 7689–7694 (2006b)CrossRefGoogle Scholar
  15. D. Lehnert, B. Wehrle-Haller, C. David, U. Weiland, C. Ballestrem, B.A. Imhof, M. Bastmeyer, Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. J. Cell. Sci. 117, 41–52 (2004)CrossRefGoogle Scholar
  16. C.-M. Lo, H.-B. Wang, M. Dembo, Y.-L. Wang, Cell movement is guided by the rigidity of the substrate. Biophys J. 79, 144–152 (2000)CrossRefGoogle Scholar
  17. R. Lovchik, C. von Arx, A. Viviani, E. Delamarche, Cellular microarrays for use with capillary-driven microfluidics. Anal. Bioanal. Chem. 390, 801–808 (2008)CrossRefGoogle Scholar
  18. A. Mata, C. Boehm, A.J. Fleischman, G. Muschler, S. Roy, Growth of connective tissue progenitor cells on microtextured polydimethylsiloxane surfaces. J. Biomed. Mater. Res. 62, 499–506 (2002)CrossRefGoogle Scholar
  19. M. Ochsner, M.R. Dusseiller, H.M. Grandin, S. Luna-Morris, M. Textor, V. Vogel, M.L. Smith, Micro-well arrays for 3D shape control and high resolution analysis of single cells. Lab Chip 7, 1074–1077 (2007)CrossRefGoogle Scholar
  20. B. Pinto-Iguanero, A. Olivares-Pérez, I. Fuentes-Tapia, Holographic material film composed by Norland Noa 65 adhesive. Opt. Mater. 20, 225–232 (2002)CrossRefGoogle Scholar
  21. L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.-C. Voegel, C. Picart, Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules 5, 284–294 (2004)CrossRefGoogle Scholar
  22. S. Svedhem, D. Dahlborg, J. Ekeroth, J. Kelly, F. Höök, J. Gold, In situ peptide-modified supported lipid bilayers for controlled cell attachment. Langmuir 19, 6730–6736 (2003)CrossRefGoogle Scholar
  23. T. Tzvetkova-Chevolleau, A. Stéphanou, D. Fuard, J. Ohayon, P. Schiavone, P. Tracqui, The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 29, 1541–1551 (2008)CrossRefGoogle Scholar
  24. S.Y.U. Venyaminov, N.N. Kalnin, Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption band. Biopolymers 30, 1243–1257 (1990)CrossRefGoogle Scholar
  25. K. Yamauchi, H. Hojo, Y. Yamamoto, T. Tanabe, Enhanced cell adhesion on RGDS-carrying keratin film. Mat. Sci. Eng. C 23, 467–472 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Linzhi Tang
    • 1
  • Junhong Min
    • 1
  • Eun-Cheol Lee
    • 1
  • Jong Sung Kim
    • 2
  • Nae Yoon Lee
    • 1
  1. 1.Gachon BioNano Research Institute & Division of BioNano Technology and College of BioNano TechnologyKyungwon UniversitySeongnamSouth Korea
  2. 2.Department of Chemical & BioengineeringKyungwon UniversitySeongnamSouth Korea

Personalised recommendations