Biomedical Microdevices

, 11:1317 | Cite as

RoboSCell: an automated single cell arraying and analysis instrument

  • Kelly Sakaki
  • Ian G. Foulds
  • William Liu
  • Nikolai Dechev
  • Robert D. Burke
  • Edward J. Park


Single cell research has the potential to revolutionize experimental methods in biomedical sciences and contribute to clinical practices. Recent studies suggest analysis of single cells reveals novel features of intracellular processes, cell-to-cell interactions and cell structure. The methods of single cell analysis require mechanical resolution and accuracy that is not possible using conventional techniques. Robotic instruments and novel microdevices can achieve higher throughput and repeatability; however, the development of such instrumentation is a formidable task. A void exists in the state-of-the-art for automated analysis of single cells. With the increase in interest in single cell analyses in stem cell and cancer research the ability to facilitate higher throughput and repeatable procedures is necessary. In this paper, a high-throughput, single cell microarray-based robotic instrument, called the RoboSCell, is described. The proposed instrument employs a partially transparent single cell microarray (SCM) integrated with a robotic biomanipulator for in vitro analyses of live single cells trapped at the array sites. Cells, labeled with immunomagnetic particles, are captured at the array sites by channeling magnetic fields through encapsulated permalloy channels in the SCM. The RoboSCell is capable of systematically scanning the captured cells temporarily immobilized at the array sites and using optical methods to repeatedly measure extracellular and intracellular characteristics over time. The instrument’s capabilities are demonstrated by arraying human T lymphocytes and measuring the uptake dynamics of calcein acetoxymethylester—all in a fully automated fashion.


Single cell Automation Instrumentation Manipulation Microarray MEMS Immunomagnetic 


  1. Y. H. Anis, M. R. Holl, D. R. Meldrum, Proc. 4th IEEE Conf. Autom. Sci. Eng., 315 (2008)Google Scholar
  2. P. I. Corke, Visual Control of Robots, 1st edn. (Research Studies Press, Taunton, 1996), pp. 151–170Google Scholar
  3. D. Di Carlo, L.P. Lee, Anal. Chem. 78, 7918 (2006)CrossRefGoogle Scholar
  4. A.L. Dogan, O. Legrand, A. Faussat, J. Perrot, J. Marie, Leukemia Res., 28, 619–22 (2004)CrossRefGoogle Scholar
  5. H.M. Eilken, S. Nishikawa, T. Schroeder, Nat. 457, 896 (2009)CrossRefGoogle Scholar
  6. D.S. Hewapathirane, K. Haas, J. Vis. Exp. 17, 705 (2008)Google Scholar
  7. B.L.M. Hogan, Cell 96, 225 (1999)CrossRefGoogle Scholar
  8. T. Holm, H. Johansson, P. Lundberg, M. Pooga, M. Lindgren, Ü. Langel, Nat. Protoc. (2006). doi:10.1038/nprot.2006/174 Google Scholar
  9. H.B. Huang, D. Sun, J.K. Mills, S.H. Cheng, IEEE Trans. Robot. 25, 727 (2009)Google Scholar
  10. C.C. Lin, A. Chen, C.H. Lin, Biomed. Microdevices 10, 55 (2008)CrossRefGoogle Scholar
  11. C. Liu, Mechatronics 8, 613 (1998)CrossRefGoogle Scholar
  12. W. Liu, N. Dechev, I.G. Foulds, R.D. Burke, A. Parameswaran, E.J. Park, Lab. Chip. 9, 2381 (2009)CrossRefGoogle Scholar
  13. Z. Lu, P.C.Y. Chen, J. Nam, R. Ge, W. Lin, J. Micromech. Microeng 17, 314 (2007)CrossRefGoogle Scholar
  14. J. Olofsson, K. Nolkrantz, F. Ryttsén, B.A. Lambie, S.G. Weber, O. Orwar, Curr. Opin. Biotechnology 14, 29 (2003)CrossRefGoogle Scholar
  15. J.L. Rae, A. Levis, Euro J. Physiol. 443, 664 (2001)CrossRefGoogle Scholar
  16. M.J. Rosenbluth, W.A. Lam, D.A. Fletcher, Biophys. J. 90, 2994 (2006)CrossRefGoogle Scholar
  17. K. Sakaki, N. Dechev, R.D. Burke, E.J. Park, Trans. Biomed. Eng. 56, 2064 (2009)CrossRefGoogle Scholar
  18. S.J. Tan, L. Yobas, G.Y.H. Lee, C.N. Ong, C.T. Lim, Biomed. Microdevices 11, 883 (2009)CrossRefGoogle Scholar
  19. W. Wang, X. Liu, D. Gelinas, B. Ciruna, Y. Sun, PLoS ONE (2007) doi:10.1371/journal.pone.0000862
  20. N. Yamamoto, S. Danos, P.D. Bonnitcha, T.W. Failes, E.J. New, T.W. Hambley, J. Biol. Inorg. Chem. 13, 861 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Kelly Sakaki
    • 1
  • Ian G. Foulds
    • 2
  • William Liu
    • 3
  • Nikolai Dechev
    • 3
  • Robert D. Burke
    • 4
  • Edward J. Park
    • 1
  1. 1.Mechatronic Systems Engineering, School of Engineering ScienceSimon Fraser UniversitySurreyCanada
  2. 2.Department of Electrical EngineeringKing Abdullah University of Science and TechnologyJeddahSaudi Arabia
  3. 3.Department of Mechanical EngineeringUniversity of VictoriaVictoriaCanada
  4. 4.Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaCanada

Personalised recommendations