Biomedical Microdevices

, 11:1297 | Cite as

A microfluidic device for separation of amniotic fluid mesenchymal stem cells utilizing louver-array structures

  • Huei-Wen Wu
  • Xi-Zhang Lin
  • Shiaw-Min Hwang
  • Gwo-Bin Lee


Human mesenchymal stem cells can differentiate into multiple lineages for cell therapy and, therefore, have attracted considerable research interest recently. This study presents a new microfluidic device for bead and cell separation utilizing a combination of T-junction focusing and tilted louver-like structures. For the first time, a microfluidic device is used for continuous separation of amniotic stem cells from amniotic fluids. An experimental separation efficiency as high as 82.8% for amniotic fluid mesenchymal stem cells is achieved. Furthermore, a two-step separation process is performed to improve the separation efficiency to 97.1%. These results are based on characterization experiments that show that this microfluidic chip is capable of separating beads with diameters of 5, 10, 20, and 40 μm by adjusting the volume-flow-rate ratio between the flows in the main and side channels of the T-junction focusing structure. An optimal volume-flow-rate ratio of 0.5 can lead to high separation efficiencies of 87.8% and 85.7% for 5-μm and 10-μm beads, respectively, in a one-step separation process. The development of this microfluidic chip may be promising for future research into stem cells and for cell therapy.


Amniotic fluid MSC Separation MEMS Microfluidics 



amniotic fluid


amniotic fluid mesenchymal stem cell




Bioeresource Collection and Research Center






digital image processing


electroosmotic flow


fluorescein isothiocyanate


immunoglobulin G


mesenchymal stem cell




optically induced dielectrophoresis


phosphate buffered saline






red blood cell


scanning electron microscope




white blood cell


  1. I. Barbulovic-Nad, X.C. Xuan, J.S.H. Lee, D.Q. Li, Lab. Chip. 6, 274 (2006)CrossRefGoogle Scholar
  2. L.M. Barrett, A.J. Skulan, A.K. Singh, E.B. Cummings, G.J. Fiechtner, Anal. Chem. 77, 6798 (2005)CrossRefGoogle Scholar
  3. I.K. Chang, A. Tajima, Y. Yasuda, T. Chikamune, T. Ohno, Cell Bio. Int. Rep. Sep. 16, 853 (1992)CrossRefGoogle Scholar
  4. Y.S. Chien, C.H. Lin, F.J. Kao, C.W. Ko, Mater. Sci. Forum. 505–507, 643 (2006)CrossRefGoogle Scholar
  5. S. Choi, S. Song, C. Choi, J.K. Park, Lab. Chip. 7, 1532 (2007)CrossRefGoogle Scholar
  6. S. Cipriani, D. Bonini, E. Marchina, I. Balgkouranidou, Cell Biol. Int. 31, 845 (2007)CrossRefGoogle Scholar
  7. V.V. Delinder, A. Groisman, Anal. Chem. 79, 2023 (2007)CrossRefGoogle Scholar
  8. D. Dhananjay, S.G. Shelley, C.P. Daniel, T.A. Hatton, S.D. Patrick, Lab. Chip. 7, 818 (2007)CrossRefGoogle Scholar
  9. P.R.C. Gascoyne, Y. Huang, R. Peting, J. Vykoukal, F.F. Becker, Meas. Sci. Technol. 3, 439 (1992)CrossRefGoogle Scholar
  10. K.H. Han, A.B. Frazier, Lab. Chip. 8, 1079 (2008)CrossRefGoogle Scholar
  11. D. Huh, J.H. Bahng, Y. Ling, H.H. Wei, O.D. Kripfgans, J.B. Fowlkes, J.B. Grotberg, S. Takayama, Anal. Chem. 79, 1369 (2007)CrossRefGoogle Scholar
  12. S. Hwang, S. Varghese, J. Elisseeff, Adv. Drug. Deliver. Rev. 60, 199 (2008a)CrossRefGoogle Scholar
  13. S. Hwang, S. Varghese, J. Elisseeff, Adv. Drug. Deliv. Rev. 60, 199 (2008b)CrossRefGoogle Scholar
  14. P.S. In ’t Anker, S.A. Scherjon, C. Kleijburg-van der Keur, W.A. Noort, F.H. Claas, R. Willemze, Blood 102, 1548 (2003)CrossRefGoogle Scholar
  15. H.M. Ji, V. Samper, Y. Chen, C.K. Heng, T.M. Lim, L. Yobas, Biomed. Microdevices. 10, 251 (2008)CrossRefGoogle Scholar
  16. Y. Jiang, B.N. Jahagirdar, R.L. Reinhardt, R.E. Schwartz, C.D. Keene, X.R. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, M. Blackstad, J. Du, S. Aldrich, A. Lisberg, W.C. Low, D.A. Largaespada, C.M. Verfaillie, Nature 447, 880 (2007)CrossRefGoogle Scholar
  17. S.K. Kang, D.H. Lee, Y.C. Bae, H.K. Kim, S.Y. Baik, J.S. Jung, Exp. Neurol. 183, 355 (2003)CrossRefGoogle Scholar
  18. Y.M. Kolambkar, A.A. Peister, A.S. Soker, A. Atala, R.E. Guldberg, J. Mol. Hist. 38, 405 (2007)CrossRefGoogle Scholar
  19. T. Laurell, F. Petersson, A. Nilsson, Chem. Soc. Rev. 36, 492 (2007)CrossRefGoogle Scholar
  20. O.K. Lee, T.K. Kuo, W.M. Chen, K.D. Lee, S.L. Hsieh, T.H. Chen, Blood 103, 1669 (2004)CrossRefGoogle Scholar
  21. H. Li, J. Friend, L. Yeo, Biomed. Microdevices. 28, 4098 (2007)Google Scholar
  22. Y.H. Lin, G.B. Lee, Biosens. Bioelectron. 24, 572 (2008)CrossRefGoogle Scholar
  23. C.H. Lin, C.Y. Lee, L.M. Fu, 19th IEEE International Conference on Micro Electro Mechanical Systems (2006)Google Scholar
  24. Y.A. Lin, T.S. Wong, U. Bhardwaj, J.M. Chen, E. McCabe, C.M. Ho, J. Micromech. Microeng. 17, 1299 (2007)CrossRefGoogle Scholar
  25. A.T. Ohta, P.Y. Chiou, T.H. Han, J.C. Liao, U. Bhardwaj, E.R.B. McCabe, F. Yu, R. Sun, M.C. Wu, J. Microelectromech. S. 16, 491 (2007)CrossRefGoogle Scholar
  26. L. Perin, S. Giuliani, D. Jin, S. Sedrakyan, G. Carraro, R. Habibian, D. Warburton, A. Atala, R.E.D. Filippo, Cell Prolif. 40, 936 (2007)CrossRefGoogle Scholar
  27. M.S. Pommer, Y. Zhang, N. Keerthi, D. Chen, J.A. Thomson, C.D. Meinhart, H.T. Soh, Electrophoresis 29, 1213 (2008)CrossRefGoogle Scholar
  28. A.K. Rehni, N. Singh, A.S. Jaggi, M. Singh, Behav. Brain Res. 183, 195 (2007)CrossRefGoogle Scholar
  29. A.F.J. Robert, Nanomedicine I. (1999)Google Scholar
  30. R. Rong, J.W. Choi, C.H. Ahn, J. Micromech. Microeng. 16, 2783 (2006)CrossRefGoogle Scholar
  31. Y. Sai, M. Yamada, M. Yasuda, M. Seki, J. Chromatogr. A. 1127, 214–220 (2006)CrossRefGoogle Scholar
  32. D. Schmidt, J. Achermann, B. Odermatt, C. Breymann, A. Mol, M. Genoni, G. Zund, S.P. Hoerstrup, Circulation 116, I-64 (2007)CrossRefGoogle Scholar
  33. P. Sethu, A. Sin, M. Toner, Lab. Chip. 6, 83 (2006)CrossRefGoogle Scholar
  34. N. Siegel, M. Rosner, M. Hanneder, A. Freilinger, M. Hengstschläger, Amino Acids 35, 291 (2008)CrossRefGoogle Scholar
  35. C.H. Wang, G.-B. Lee, J. Micromech. Microeng. 16, 341 (2006)CrossRefGoogle Scholar
  36. P. Wilding, L.J. Kricka, J. Cheng, G. Hvichia, M.A. Shoffner, P. Fortina, Anal. Biochem. 257, 95 (1998)CrossRefGoogle Scholar
  37. Z. Wu, A.Q. Liu, K. Hjort, J. Micromech. Microeng. 17, 1992 (2007)CrossRefGoogle Scholar
  38. N. Xia, T. Hunt, B. Mayers, E. Alsberg, G. Whitesides, R. Westervelt, D. Ingber, Biomed. Microdevices. 8, 299 (2006)CrossRefGoogle Scholar
  39. M. Yamada, M. Seki, Lab. Chip. 5, 1233 (2005)CrossRefGoogle Scholar
  40. M. Yamada, M. Nakashima, M. Seki, Anal. Chem. 76, 5465 (2004)CrossRefGoogle Scholar
  41. S.Y. Yang, S.K. Hsiung, Y.C. Hung, C.M. Chang, T.L. Liao, G.B. Lee, Meas. Sci. Technol. 17, 2001 (2006)CrossRefGoogle Scholar
  42. S.Y. Yang, K.Y. Lien, K.J. Huang, H.Y. Lei, G.B. Lee, Biosens. Bioelectron. (2008). in press.Google Scholar
  43. B.L. Yen, H.I. Huang, C.C. Chien, H.Y. Jui, B.S. Ko, M. Yao, C.T. Shun, M.L. Yen, M.C. Lee, Y.C. Chen, Stem Cells 23, 3 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Huei-Wen Wu
    • 1
  • Xi-Zhang Lin
    • 2
  • Shiaw-Min Hwang
    • 3
  • Gwo-Bin Lee
    • 1
  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan
  2. 2.Department of MedicineNational Cheng Kung UniversityTainanTaiwan
  3. 3.Bioresource Collection and Research CenterFood Industry Research and Development InstituteHsinchuTaiwan

Personalised recommendations