Biomedical Microdevices

, 11:1289 | Cite as

Disposable plastic microreactors for genomic analyses

  • S. Sabella
  • G. Vecchio
  • P. P. Pompa
  • G. Maruccio
  • L. Sanarica
  • A. Della Torre
  • G. De Bellis
  • G. Caramenti
  • C. Consolandi
  • M. Severgnini
  • R. Cingolani
  • R. Rinaldi
Article

Abstract

We show the design, development and assessment of disposable, biocompatible, fully plastic microreactors, which are demonstrated to be highly efficient for genomic analyses, such as amplification of DNA, quantitative analyses in real time, multiplex PCR (both in terms of efficiency and selectivity), as compared to conventional laboratory equipment for PCR. The plastic microreactors can easily be coupled to reusable hardware, enabling heating/cooling processes and, in the case of qPCR applications, the real-time detection of the signal from a suitable fluorescent reporter present in the reaction mixture during the analysis. The low cost production of these polymeric microreactors, along with their applicability to a wide range of biochemical targets, may open new perspectives towards practical applications of biochips for point of care diagnostics.

Keywords

Plastic microreactors Genomic analyses Real time PCR Biochip 

Abbreviations

PCR

Polymerase Chain Reaction

qPCR

quantitative PCR

PDMS

Polydimethylsiloxane

PMMA

Polymethyl-methacrylate

BSA

Bovine serum albumin

PEG

Polyethylene-glycol

References

  1. P. Belgrader, S. Young, B. Yuan, M. Primeau, L.A. Christel, F. Pourahmadi, M.A. Northrup, Anal. Chem. 73, 286 (2001). doi:10.1021/ac000905v CrossRefGoogle Scholar
  2. S. Bhattacharya, A. Datta, J.M. Berg, S. Gangopadhyay, J. Microelectromech. Syst. 14, 591 (2005). doi:10.1109/JMEMS.2005.844746 CrossRefGoogle Scholar
  3. D.C. Duffy, J.C. McDonald, O.J.A. Shueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998). doi:10.1021/ac980656z CrossRefGoogle Scholar
  4. B.C. Giordano, E.B. Copeland, J.P. Landers, Electrophoresis 22, 34 (2001). doi:10.1002/1522-2683(200101)22:2<334::AID-ELPS334>3.0.CO;2-OCrossRefGoogle Scholar
  5. S.C. Jacobson, A.W. Moore, J.M. Ramsey, Anal. Chem. 67, 2059 (1995). doi:10.1021/ac00109a026 CrossRefGoogle Scholar
  6. M.U. Kopp, A.J. de Mello, A. Manz, Science 280, 1046 (1998). doi:10.1126/science.280.5366.1046 CrossRefGoogle Scholar
  7. D.-S. Lee, S.H. Park, H. Yang, K.-H. Chung, T.H. Yoon, S.-J. Kim, K. Kim, Y.T. Kim, Lab Chip 4, 401 (2004). doi:10.1039/b313547k CrossRefGoogle Scholar
  8. P. Neuzil, J. Pipper, T.M. Hsieh, Mol. Biosyst. 2, 292 (2006). doi:10.1039/b605957k CrossRefGoogle Scholar
  9. M.A. Northrup, B. Benett, D. Hadley, P. Landre, S. Lehew, J. Richards, P. Stratton, Anal. Chem. 70, 918 (1998). doi:10.1021/ac970486a CrossRefGoogle Scholar
  10. K.A. Shaikh, K.S. Ryu, E.D. Goluch, J.-M. Nam, J. Liu, C.S. Thaxton, T.N. Chiesl, A.E. Barron, Y. Lu, C.A. Mirkin, C. Liu, Proc. Natl. Acad. Sci. USA 102, 9745 (2005). doi:10.1073/pnas.0504082102 CrossRefGoogle Scholar
  11. Y.S. Shin, K. Cho, S.H. Lim, S. Chung, S.-J. Park, C. Chung, D.-C. Han, J.K. Chang, J. Micromech. Microeng. 13, 768 (2003). doi:10.1088/0960-1317/13/5/332 CrossRefGoogle Scholar
  12. K. Suna, A. Yamaguchi, Y. Ishida, S. Matsuo, H. Misawa, Sensors Actuators B 84, 283 (2002)CrossRefGoogle Scholar
  13. Y. Weiping, D. Liqun, W. Jing, M. Lingzhi, Z. Jianbo, Sensors Actuators B 108, 695 (2005)CrossRefGoogle Scholar
  14. Y. Xia, G.M. Whitesides, Annu. Rev. Mater. Sci. 28, 153 (1998). doi:10.1146/annurev.matsci.28.1.153 CrossRefGoogle Scholar
  15. Q. Xiang, B. Xu, R. Fu, D. Li, Biomed. Microdevices 7, 273 (2005). doi:10.1007/s10544-005-6069-8 CrossRefGoogle Scholar
  16. Q. Xiang, B. Xu, D. Li, Biomed. Microdevices 9, 443 (2007). doi:10.1007/s10544-007-9048-4 CrossRefGoogle Scholar
  17. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, B.H. Weigl, Nature 442, 412 (2006). doi:10.1038/nature05064 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Sabella
    • 1
    • 3
  • G. Vecchio
    • 1
  • P. P. Pompa
    • 1
  • G. Maruccio
    • 1
  • L. Sanarica
    • 1
  • A. Della Torre
    • 1
  • G. De Bellis
    • 2
  • G. Caramenti
    • 2
  • C. Consolandi
    • 2
  • M. Severgnini
    • 2
  • R. Cingolani
    • 1
  • R. Rinaldi
    • 1
  1. 1.National Nanotechnology Laboratory of CNR-INFMIIT Research UnitLecceItaly
  2. 2.Institute of Biomedical TechnologiesNational Research Council (ITB-CNR)SegrateItaly
  3. 3.National Nanotechnology Laboratory of INFM-CNRItalian Institute of Technology (IIT)LecceItaly

Personalised recommendations