Biomedical Microdevices

, 11:1279 | Cite as

A self-contained fully-enclosed microfluidic cartridge for lab on a chip

  • Levent Yobas
  • Lih Feng Cheow
  • Kum-Cheong Tang
  • Shien-Eit Yong
  • Eleana Kye-Zheng Ong
  • Lionel Wong
  • William Cheng-Yong Teo
  • Hongmiao Ji
  • Siti Rafeah
  • Chen Yu
Article

Abstract

We describe a self-contained fully-enclosed cartridge for lab-on-a-chip applications where sample and reagents can be applied sequentially as is performed in a heterogeneous immunoassay, or nucleic acid extraction. Both the self-contained and fully-enclosed features of the cartridge are sought to ensure its safe use in the field by unskilled staff. Simplicity in cartridge design and operation is obtained via adopting a valveless concept whereby reagents are stored and used in the form of liquid plugs isolated by air spacers around a fluidic loop. Functional components integrated in the loop include a microfluidic chip specific to the target application, a novel peristaltic pump to displace the liquid plugs, and a pair of removable tubing segments where one is used to introduce biological sample and while the other is to collect eluant. The novel pump is fabricated through soft-lithography technique and works by pinching a planar channel under stainless-steel ball bearings that have been magnetically loaded. The utility of the cartridge is demonstrated for automated extraction and purification of nucleic acids (DNA) from a cell lysate on a battery-operated portable system. The cartridge shown here can be further extended to sample-in-answer-out diagnostic tests.

Keywords

Microfluidics Lab on a chip Cartridge Nucleic acid Point of care 

References

  1. R. Boom, C.J.A. Sol, M.M.M. Salimans, C.L. Jansen, P.M.E. Wertheim-van Dillen, J. Van der Noordaa, J. Clinic. Microbiol. 28, 495 (1990)Google Scholar
  2. M.C. Breadmore, K.A. Wolfe, I.G. Arcibal, W.K. Leung, D. Dickson, B.C. Giordano, M.E. Power, J.P. Ferrance, S.H. Feldman, P.M. Norris, J.P. Landers, Anal. Chem. 75, 1880 (2003)CrossRefGoogle Scholar
  3. M.A. Burns, C.H. Mastrangelo, T.S. Sammarco, F.P. Man, J.R. Webster, B.N. Johnson, B. Foerster, D. Jones, Y. Fields, A.R. Kaiser, D.T. Burke, Proc. Natl. Acad. Sci. USA 93, 5556 (1996)CrossRefGoogle Scholar
  4. M.A. Burns, B.N. Johnson, S.N. Brahmasandra, K. Handique, J.R. Webster, M. Krishnan, T.S. Sammarco, P.M. Man, D. Jones, D. Heldsinger, C.H. Mastrangelo, D.T. Burke, Science 282, 484 (1998)CrossRefGoogle Scholar
  5. N.C. Cady, S. Stelick, C.A. Batt, Biosens. Bioelectron. 19, 59 (2003)CrossRefGoogle Scholar
  6. C.D. Chin, V. Linder, S.K. Sia, Lab Chip 7, 41 (2007)CrossRefGoogle Scholar
  7. L.A. Christel, K. Petersen, W. McMillan, M.A. Northrup, J. of Biomech. Eng. — Trans. ASME 12, 22 (1999)CrossRefGoogle Scholar
  8. D.C. Duffy, J.C. McDonald, O.J.A. Schueller, G.M. Whitesides, Anal. Chem. 70, 4974 (1998)CrossRefGoogle Scholar
  9. C.S. Easley, J.M. Karlinsey, J.M. Bienvenue, L.A. Legendre, M.G. Roper, S.H. Feldman, M.A. Hughes, E.L. Hewlett, T.J. Merkel, J.P. Ferrance, J.P. Landers, Proc. Natl. Acad. Sci. USA 103, 19272 (2006)CrossRefGoogle Scholar
  10. W.C. Hui, L. Yobas, V.D. Samper, C.K. Heng, S. Liw, H.M. Ji, Y. Chen, L. Cong, J. Li, T.M. Lim, Sens. Actuators A 133, 335 (2007)CrossRefGoogle Scholar
  11. M.H. Lee, I.M. Hsing, Anal. Chim. Acta 556, 26 (2006)CrossRefGoogle Scholar
  12. V. Linder, S.K. Sia, G.M. Whitesides, Anal. Chem. 77, 64 (2005)CrossRefGoogle Scholar
  13. R.H. Liu, J. Yang, R. Lenigk, J. Bonanno, P. Grodzinski, Anal. Chem. 76, 1824 (2004)CrossRefGoogle Scholar
  14. L.W. Luo, C.Y. Teo, W.L. Ong, K.C. Tang, L.F. Cheow, L. Yobas, J. Micromech. Microeng. 17, N107 (2007)CrossRefGoogle Scholar
  15. P.J. Obeid, T.K. Christopoulos, H.J. Crabtree, C.J. Backhouse, Anal. Chem. 75, 288 (2003)CrossRefGoogle Scholar
  16. A.P. Sudarsan, V.M. Ugaz, Lab Chip 6, 74 (2006)CrossRefGoogle Scholar
  17. B. Vogelstein, D. Gillespie, Proc. Natl. Acad. Sci. USA 76, 615 (1979)CrossRefGoogle Scholar
  18. D.B. Weibel, A.C. Siegel, A. Lee, A.H. George, G.M. Whitesides, Lab Chip 7, 1832 (2007)CrossRefGoogle Scholar
  19. P. Wilding, L.J. Kricka, J. Cheng, G. Hvichia, M.A. Shoffner, P. Fortina, Anal. Biochem. 257, 95 (1998)CrossRefGoogle Scholar
  20. K.A. Wolfe, M.C. Breadmore, J.P. Ferrance, M.E. Power, J.F. Conroy, P.M. Norris, J.P. Landers, Electrophoresis 23, 727 (2002)CrossRefGoogle Scholar
  21. S.W. Yeung, T.M.H. Lee, H. Cai, I.-M. Hsing, Nucleic Acid Res. 34, e118 (2006)CrossRefGoogle Scholar
  22. L. Yobas, W. Hui, H.M. Ji, Y. Chen, S.S.I. Liw, J. Li, , C.S. Chong, X. Ling, C.K. Heng, H.J. Lye, S.R. Bte, K. Lee, S. Swarup, S.M. Wong, and T.M. Lim, 4th IEEE Conference on Sensors, 2005, p. 49.Google Scholar
  23. L. Yobas, H.M. Ji, Y. Chen, L. Saxon, W.C. Hui, S. Rafeah, S.C. Chong, X. Ling, L.J. Jing, S.M. Wong, T.M. Lim, and C.K. Heng, 10th International Conference on µTAS, 2006, p. 317.Google Scholar
  24. L. Yobas, H.M. Ji, W.C. Hui, Y. Chen, T.M. Lim, C.K. Heng, D.L. Kwong, IEEE J. Solid-State Circuits 42, 1803 (2007)CrossRefGoogle Scholar
  25. L. Yobas, K.C. Tang, S.-E. Yong, E.K.-Z. Ong, Lab Chip 5, 660 (2008)CrossRefGoogle Scholar
  26. G. Zhiqiang, A. Agarwal, A.D. Trigg, N. Singh, C. Fang, C.-H. Tung, Y. Fan, K.D. Buddharaju, J. Kong, Anal. Chem. 79, 3291 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Levent Yobas
    • 1
  • Lih Feng Cheow
    • 1
  • Kum-Cheong Tang
    • 1
  • Shien-Eit Yong
    • 1
  • Eleana Kye-Zheng Ong
    • 1
  • Lionel Wong
    • 1
  • William Cheng-Yong Teo
    • 1
  • Hongmiao Ji
    • 1
  • Siti Rafeah
    • 1
  • Chen Yu
    • 1
  1. 1.Institute of Microelectronics, 11 Science Park RoadSingaporeSingapore

Personalised recommendations