Biomedical Microdevices

, 11:1251 | Cite as

A monolithic polymeric microdevice for pH-responsive drug delivery

  • Jian Chen
  • Michael Chu
  • Khajag Koulajian
  • Xiao Yu Wu
  • Adria Giacca
  • Yu Sun
Article

Abstract

A drug-delivery microdevice integrating pH-responsive nano-hydrogel particles functioning as intelligent nano valves is described. The polymeric microdevices are monolithic without requiring peripheral control hardware or additional components for controlling drug-release rates. pH-responsive nanoparticles were synthesized and embedded into a composite membrane. The resulting pH-responsive composite membranes were integrated with PDMS micro reservoirs via a room-temperature transfer bonding technique to form the proof-of-concept microdevices. In vitro release characterization of the microdevices was conducted in which the release rate of Vitamin B12 (VB12) as a model drug increased dramatically when the local pH value was decreased from 7.4 to 4. This device concept can serve as a platform technology for intelligent drug delivery in response to various in vivo environmental signals.

Keywords

Controlled drug delivery Microdevices pH-responsive hydrogel Nano hydrogel particles 

References

  1. T. Amiya, Y. Hirokawa, Y. Hirose, Y. Li, T. Tanaka, J. Chem. Phys. 86, 2375 (1987)Google Scholar
  2. A. Baldi, R. Siegel, B. Ziaie, IEEE J. Microelectromechanical System 12, 613 (2003)CrossRefGoogle Scholar
  3. D. Beebe et al., Nature 404, 588 (2000)CrossRefGoogle Scholar
  4. S. Chaterji, I. Kwon, K. Park, Prog. Polym. Sci. 32, 1083 (2007)CrossRefGoogle Scholar
  5. G. Chen, A.S. Hoffman, Nature 373, 49 (1995)CrossRefGoogle Scholar
  6. L.C. Dong, A.S. Hoffman, J. Control. Release 15, 141 (1991)CrossRefGoogle Scholar
  7. E. Gil, S.M. Hudson, Prog. Polym. Sci. 29, 1173 (2004)CrossRefGoogle Scholar
  8. A. Grayson, I.S. Choi, R. Langer, Nat. Mater. 2, 767 (2003)CrossRefGoogle Scholar
  9. P. Gupta, K. Vermani, S. Garg, DDT 7, 569 (2002)Google Scholar
  10. Y. Hirokawa, T. Tanaka, J. Chem. Phys. 81, 6379 (1984)CrossRefGoogle Scholar
  11. H. Ichikawa, Y. Fukumori, J. Control. Release 63, 107 (2000)CrossRefGoogle Scholar
  12. J. Intra, J.M. Glasgow et al., J. Control. Release 127, 280 (2008)CrossRefGoogle Scholar
  13. M. Irie, Adv. Polym. Sci. 110, 49 (1993)CrossRefGoogle Scholar
  14. Y. Li, R. Langer et al., J. Control. Release 106, 138 (2005)CrossRefGoogle Scholar
  15. Y. Li, R.S. Shawgo, B. Tyler, R. Langer, J. Control. Release 100, 211 (2004)CrossRefGoogle Scholar
  16. A. Lowman, Encyclopaedia of Controlled Drug Delivery, (John Wiley and Sons, 1999), pp. 397–418Google Scholar
  17. J. Kost, Encyclopaedia of Controlled Drug Delivery, (John Wiley and Sons, 1999), pp. 445–459Google Scholar
  18. J.M. Maloney, S.A. Uhland, B.F. Polito, J. Control. Release 109, 244 (2005)CrossRefGoogle Scholar
  19. G. Martin, R. Jain, Cancer Res. 54, 5670 (1994)Google Scholar
  20. T. Miyata, T. Uragamia, K. Nakamae, Adv. Drug Deliv. Rev. 54, 79 (2002)CrossRefGoogle Scholar
  21. K. Nakamae et al., J. Biomater. Sci. Polym. Ed. 9, 43 (1997)CrossRefGoogle Scholar
  22. Y. Osada, H. Okuzaki, H. Hori, Nature, 355, 242 (1992)CrossRefGoogle Scholar
  23. J.H. Prescott, S. Lipka, S. Baldwin, Nature Biotechnology 24, 437 (2006)CrossRefGoogle Scholar
  24. W.H. Ryu, M. Vyakarnam et al., Biomedical Microdevice 9, 845 (2007)CrossRefGoogle Scholar
  25. J.T. Santini, M.J. Cima, R. Langer, Nature 397, 335 (1999)CrossRefGoogle Scholar
  26. D. Schmaljohann, Adv. Drug Deliv. Rev. 58, 1655 (2006)CrossRefGoogle Scholar
  27. M. Staples, K. Daniel, M.J. Cima, R. Langer, Pharmaceutical Research 23, 847–863 (2006)CrossRefGoogle Scholar
  28. A. Suzuki, T. Tanaka, Nature 346, 345 (1990)CrossRefGoogle Scholar
  29. D. Szab, G. Szeghy, M. Zrnyi, Macromolecules 31, 6541 (1998)CrossRefGoogle Scholar
  30. T. Tanaka, Phys. Rev. Lett. 40, 820 (1978)CrossRefGoogle Scholar
  31. T. Tanaka, D. Fillmore, S.T. Sun et al., Phys. Rev. Lett. 45, 1636 (1980)CrossRefGoogle Scholar
  32. T. Tanaka, I. Nishio, S.T. Sun et al., Science 218, 467 (1982)CrossRefGoogle Scholar
  33. X.Y. Wu, P.I. Lee, Pharm. Res. 10, 1544 (1993)CrossRefGoogle Scholar
  34. X.Y. Wu, Q. Zhang, R. Arshady, in Polymeric Biomaterials, ed. by R. Arshady (Citus Books, London, UK, 2003), pp. 157–194Google Scholar
  35. F. Yam, X.Y. Wu, Polymer Preprint, 40, 312 (1999)Google Scholar
  36. K. Zhang, X.Y. Wu, Biomaterials 25, 5281 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jian Chen
    • 1
  • Michael Chu
    • 2
  • Khajag Koulajian
    • 3
  • Xiao Yu Wu
    • 2
  • Adria Giacca
    • 3
  • Yu Sun
    • 1
  1. 1.Institute of Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of Pharmaceutical SciencesUniversity of TorontoTorontoCanada
  3. 3.Department of PhysiologyUniversity of TorontoTorontoCanada

Personalised recommendations