Biomedical Microdevices

, Volume 11, Issue 6, pp 1239–1250 | Cite as

Electrical characterization of a single cell electroporation biochip with the 2-D scanning vibrating electrode technology

  • Aeraj ul Haque
  • Mahvash Zuberi
  • Ruben E. Diaz-Rivera
  • D. Marshall Porterfield
Article

Abstract

Advancements in microfabrication technology have lead to the development of planar micro-pore electroporation technology. This technology has been shown to provide greater control in single cell manipulation, and electroporation which is independent from cell size. In this work we report direct and spatially resolved characterization of electric currents within a planar micropore electroporation biochip to better understand this phenomenon at the cellular level. This work was performed using a two-dimensional (2-D) vibrating probe (VP). Analysis of the spatial patterns of current density yielded a 4th order polynomial profile in the planes parallel to the biochip’s surface and a three parameter hyperbolic decay profile in the planes perpendicular to the chip surface. A finite element model was developed which correlates with actual measurements on the micropore. Preliminary VP current density measurements of electroporated HepG2 cells revealed a significantly high current density minutes after electroporation even with non-electroporative pulses. These results indicate that cells take a considerable amount of time for complete electrophysiological recovery and indicate the use of the VP as a cell viability indicator for optimized electroporation.

Keywords

Electroporation Biochip Micropore Current density Vibrating probe 

Notes

Acknowledgements

The authors would like to acknowledge members of the Purdue University Cytometry Laboratories (PUCL) for their support with microscopy and cell culture. We would also like to thank Eric McLamore for his assistance on the microprobe rigs and the staff of Bindley Bioscience Center. This work was partially funded by the Institute for Functional Nanomaterials and the Collaboration in Biomedical Engineering Research, a joint initiative between the University of Puerto Rico at Mayagüez and the Weldon School of Biomedical Engineering at Purdue University.

Supplementary material

10544_2009_9343_Fig1_ESM.gif (244 kb)
Supplementary Fig. 1

GIF 243 kb

10544_2009_9343_Fig1_ESM.tif (317 kb)
High resolution image file (TIFF 317 kb)
10544_2009_9343_Fig2_ESM.gif (243 kb)
Supplementary Fig. 2

GIF 243 kb

10544_2009_9343_Fig2_ESM.tif (337 kb)
High resolution image file (TIFF 336 kb)
10544_2009_9343_Fig3_ESM.gif (213 kb)
Supplementary Fig. 3

GIF 213 kb

10544_2009_9343_Fig3_ESM.tif (272 kb)
High resolution image file (TIFF 271 kb)
10544_2009_9343_MOESM4_ESM.doc (24 kb)
ESM 1 (DOC 24 kb)
ESM 2

(WMV 7075 kb)

References

  1. A.J. Aldykiewicz, H.S. Isaacs, Corros. Sci. 40, 1627 (1998)CrossRefGoogle Scholar
  2. F. Andre, L.M. Mir, Gene Ther. 11, S33 (2004)CrossRefGoogle Scholar
  3. R.B. Borgens, J.W. Vanable Jr., L.F. Jaffe, Proc. Nat. Acad. Sci. U.S.A. 74, 4528 (1977)CrossRefGoogle Scholar
  4. R.B. Borgens, L.F. Jaffe, M.J. Cohen, Proc. Nat. Acad. Sci. U.S.A. 77, 1208 (1980)Google Scholar
  5. D.C. Chang, Guide to electroporation and electrofusion (Academic Press, San Diego, 1992)Google Scholar
  6. A.-R. Denet, R. Vanbever, V. Preat, Adv. Drug Deliver. Rev. 56, 659 (2004)CrossRefGoogle Scholar
  7. R.E. Diaz-Rivera, B. Rubinsky, Biomed. Microdevices 8, 25 (2006)CrossRefGoogle Scholar
  8. K. Haas, W.C. Sin, A. Javaherian, Z. Li, H.T. Cline, Neuron 29, 583 (2001)CrossRefGoogle Scholar
  9. Y. Huang, B. Rubinsky, Biomed. Microdevices 2, 145 (1999)CrossRefGoogle Scholar
  10. Y. Huang, B. Rubinsky, Sensor. Actuat. A-Phys. 89, 242 (2001)CrossRefGoogle Scholar
  11. Y. Huang, B. Rubinsky, Sensor. Actuat. A-Phys. 104, 205 (2003)CrossRefGoogle Scholar
  12. L.F. Jaffe, R. Nuccitelli, J. Cell Biol. 63, (1974)Google Scholar
  13. M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, L.P. Lee, Lab on a Chip. 5, 38 (2005)CrossRefGoogle Scholar
  14. H. Krawiec, V. Vignal, R. Oltra, Electrochem. Commun. 6, 655 (2004)CrossRefGoogle Scholar
  15. R.C. Lee, M.S. Kolodney, Plast. Reconstr. Surg. 80, 663 (1987)CrossRefGoogle Scholar
  16. R.C. Lee, D.J. Zhang, J. Hannig, Ann. Rev. Biomed. Eng. 2, 477 (2000)CrossRefGoogle Scholar
  17. E.S. Lee, D. Robinson, J.L. Rognlien, C.K. Harnett, B.S. Simmons, C.R.B. Ellis, R.V. Davalos, Bioelectrochem. 69, 117 (2006)CrossRefGoogle Scholar
  18. S. Lemaire, F. Van Bembeke, Mingeot-Leclercq M-P, P.M. Tulkins, Antimicrob. Agents Ch. 51, 2748 (2007)CrossRefGoogle Scholar
  19. J.A. Lundqvist, F. Sahlin, M.A.I. Aberg, A. Stromberg, P.S. Eriksson, O. Orwar, Proc. Nat. Acad. Sci. U.S.A. 95, 10356 (1998)CrossRefGoogle Scholar
  20. E. Neumann, A.E. Sowers, C.A. Jordan, Electroporation and electrofusion in cell biology (Plenum, New York, 1989)Google Scholar
  21. T. Niidome, L. Huang, Gene Ther. 9, 1647 (2002)CrossRefGoogle Scholar
  22. R. Nuccitelli, L.F. Jaffe, Proc. Nat. Acad. Sci. U.S.A. 71, 4955 (1974)CrossRefGoogle Scholar
  23. J.L. Rae, R.A. Levis, Pflug. Arch. Eur. J. Phy. 443, 664 (2002)CrossRefGoogle Scholar
  24. B. Ried, R. Nuccitelli, M. Zhao, Nat. Protoc. 2, 661 (2007)CrossRefGoogle Scholar
  25. F. Ryttsen, C. Farre, C. Brennan, S.G. Weber, K. Nolkrantz, K. Jardemark, D.T. Chiu, O. Orwar, Biophys. J. 79, 1993 (2000)CrossRefGoogle Scholar
  26. J. Teissie, M. Golzio, M.P. Rols, Biochim. Biophys. Acta. 1724, 270 (2005)Google Scholar
  27. T. Tryfona, M.T. Bustard, Biotechnol. Bioeng. 93, 413 (2005)CrossRefGoogle Scholar
  28. T.Y. Tsong, Biophys. J. 60, 297 (1991)CrossRefGoogle Scholar
  29. J.C. Weaver, IEEE T. Dielect. El. In. 10, 754 (2003)CrossRefMathSciNetGoogle Scholar
  30. M.H. Weisenseel, H.F. Becker, J.G. Ehlgotz, Plant Physiol. 100, 16 (1992)CrossRefGoogle Scholar
  31. M. Zuberi, P. Liu-Snyder, A. ul Haque, D.M. Porterfield, R.B. Borgens, J. Biol. Eng. 2, 17 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aeraj ul Haque
    • 1
  • Mahvash Zuberi
    • 1
  • Ruben E. Diaz-Rivera
    • 2
    • 3
  • D. Marshall Porterfield
    • 4
    • 5
  1. 1.Department of Agricultural and Biological Engineering, Bindley Bioscience Center- Physiological Sensing FacilityPurdue UniversityWest LafayetteUSA
  2. 2.Department of Mechanical EngineeringUniversity of PuertoMayagüezPuerto Rico
  3. 3.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Department of Agricultural and Biological Engineering, Weldon School of Biomedical Engineering, Bindley Bioscience Center- Physiological Sensing FacilityPurdue UniversityWest LafayetteUSA
  5. 5.Department of Horticulture and Landscape Architecture, Weldon School of Biomedical Engineering, Bindley Bioscience Center- Physiological Sensing FacilityPurdue UniversityWest LafayetteUSA

Personalised recommendations