Biomedical Microdevices

, Volume 11, Issue 6, pp 1205–1212 | Cite as

Cell encapsulation and oxygenation in nanoporous microcontainers

  • Barjor Gimi
  • Joonbum Kwon
  • Li Liu
  • Yang Su
  • Krishnamurthy Nemani
  • Krutarth Trivedi
  • Yonghao Cui
  • Behroze Vachha
  • Ralph Mason
  • Wenchuang Hu
  • Jeong-Bong Lee
Article

Abstract

With strides in stem cell biology, cell engineering and molecular therapy, the transplantation of cells to produce therapeutic molecules endogenously is an attractive and achievable alternative to the use of exogenous drugs. The encapsulation of such cell transplants in semi-permeable, nanoporous constructs is often required to protect them from immune attack and to prevent their proliferation in the host. However, effective graft immunoisolation has been mostly elusive owing to the absence of a high-throughput method to create precisely controlled, high-aspect-ratio nanopores. To address the clinical need for effective cell encapsulation and immunoisolation, we devised a biocompatible cell-encapsulating microcontainer and a method to create highly anisotropic nanopores in the microcontainer’s surface. To evaluate the efficacy of these nanopores in oxygenating the encapsulated cells, we engineered 9L rat glioma cells to bioluminesce under hypoxic conditions. The methods described above should aid in evaluating the long term survival and efficacy of cellular grafts.

Keywords

Microencapsulation Nanoporosity Cell therapy Cell encapsulation therapy Immunoprotection Immunoisolation 

References

  1. B.P. Barnett, A. Arepally, P.V. Karmarkar, D. Qian, W.D. Gilson, P. Walczak, V. Howland, L. Lawler, C. Lauzon, M. Stuber, D.L. Kraitchman, J.W. Bulte, Nat Med 13, 986 (2007)CrossRefGoogle Scholar
  2. R. Bjerkvig, T.A. Read, P. Vajkoczy, P. Aebischer, W. Pralong, S. Platt, J.E. Melvik, A. Hagen, M. Dornish, Acta Neurochir Suppl 88, 137 (2003)Google Scholar
  3. F.J. Burgos, V. Gomez, J. Pascual, R. Marcen, J.J. Villafruela, C. Correa, B. Cuevas, F. Mampaso, R. Garcia-Gonzalez, Transplant Proc 38, 2585 (2006)CrossRefGoogle Scholar
  4. D. Chicheportiche, G. Reach, Diabetologia 31, 54 (1988)Google Scholar
  5. S.H. Cho, H.M. Lu, L. Cauller, M.I. Romero-Ortega, J.B. Lee, G.A. Hughes, Ieee Sensors Journal 8, 1830 (2008)CrossRefGoogle Scholar
  6. I. Constantinidis, S.C. Grant, S. Celper, I. Gauffin-Holmberg, K. Agering, J.A. Oca-Cossio, J.D. Bui, J. Flint, C. Hamaty, N.E. Simpson, S.J. Blackband, Biomaterials 28, 2438 (2007)CrossRefGoogle Scholar
  7. M. de Groot, T.A. Schuurs, R. van Schilfgaarde, J Surg Res 121, 141 (2004)CrossRefGoogle Scholar
  8. T.A. Desai, W.H. Chu, J.K. Tu, G.M. Beattie, A. Hayek, M. Ferrari, Biotechnol Bioeng 57, 118 (1998)CrossRefGoogle Scholar
  9. N.V. Evgenov, Z. Medarova, G. Dai, S. Bonner-Weir, A. Moore, Nat Med 12, 144 (2006)CrossRefGoogle Scholar
  10. B. Gimi, S. Eroglu, L. Leoni, T.A. Desai, R.L. Magin, B.B. Roman, Concepts Magn Reson B Magn Reson Eng 18B, 1 (2003)CrossRefGoogle Scholar
  11. B. Gimi, T. Leong, Z. Gu, M. Yang, D. Artemov, Z.M. Bhujwalla, D.H. Gracias, Biomed Microdevices 7, 341 (2005)CrossRefGoogle Scholar
  12. B. Gimi, J. Kwon, A. Kuznetsov, B. Vachha, R.L. Magin, L.H. Philipson, J.B. Lee, J Diabetes Sci Technol 3, 297 (2009)Google Scholar
  13. C. Hasse, T. Bohrer, P. Barth, B. Stinner, R. Cohen, H. Cramer, U. Zimmermann, M. Rothmund, World J Surg 24, 1361 (2000)CrossRefGoogle Scholar
  14. G. Hortelano, A. Al-Hendy, F.A. Ofosu, P.L. Chang, Blood 87, 5095 (1996)Google Scholar
  15. H. Iwata, N. Morikawa, T. Fujii, T. Takagi, T. Samejima, Y. Ikada, Transplant Proc 27, 3224 (1995)Google Scholar
  16. T. Kin, R.V. Rajotte, J.M. Dufour, G.S. Korbutt, Cell Transplant 11, 547 (2002)Google Scholar
  17. A. King, Ups J Med Sci 106, 161 (2001)CrossRefGoogle Scholar
  18. K.K. Papas, R.C. Long Jr., I. Constantinidis, A. Sambanis, Cell Transplant 9, 415 (2000)Google Scholar
  19. B. Rihova, Adv Drug Deliv Rev 42, 65 (2000)CrossRefGoogle Scholar
  20. A.M. Shapiro, J.R. Lakey, E.A. Ryan, G.S. Korbutt, E. Toth, G.L. Warnock, N.M. Kneteman, R.V. Rajotte, N Engl J Med 343, 230 (2000)CrossRefGoogle Scholar
  21. R.H. Thomlinson, L.H. Gray, Br J Cancer 9, 539 (1955)Google Scholar
  22. H. Tian, S.L. McKnight, D.W. Russell, Genes Dev 11, 72 (1997)CrossRefGoogle Scholar
  23. T. Vial, J. Descotes, Toxicology 185, 229 (2003)CrossRefGoogle Scholar
  24. T. Visted, R. Bjerkvig, P.O. Enger, Neuro Oncol 3, 201 (2001)CrossRefGoogle Scholar
  25. G. Voskerician, M.S. Shive, R.S. Shawgo, H. von Recum, J.M. Anderson, M.J. Cima, R. Langer, Biomaterials 24, 1959 (2003)CrossRefGoogle Scholar
  26. G. Wang, T.K. Hazra, S. Mitra, H.M. Lee, E.W. Englander, Nucleic Acids Res 28, 2135 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Barjor Gimi
    • 1
    • 2
  • Joonbum Kwon
    • 2
  • Li Liu
    • 1
  • Yang Su
    • 1
  • Krishnamurthy Nemani
    • 1
  • Krutarth Trivedi
    • 2
  • Yonghao Cui
    • 2
  • Behroze Vachha
    • 1
  • Ralph Mason
    • 1
  • Wenchuang Hu
    • 2
  • Jeong-Bong Lee
    • 2
  1. 1.UT Southwestern Medical Center at DallasDallasUSA
  2. 2.The University of Texas at DallasRichardsonUSA

Personalised recommendations