Biomedical Microdevices

, 11:1195 | Cite as

Mass producible and biocompatible microneedle patch and functional verification of its usefulness for transdermal drug delivery

  • Chun Yan Jin
  • Man Hee Han
  • Seung S. Lee
  • Yo Han Choi
Article

Abstract

The key issues in the development of a microneedle patch as a tool for transdermal drug delivery are safety and delivery performance in addition to economical production. In this paper, novel fabrication methods for an inexpensive microneedle patch made of biocompatible polymer are reported, along with functional verifications for the fabricated microneedle patch through animal models. We combined the merits of in-line microneedles, i.e., easy and economical production, with the superior performance of two-dimensionally arrayed microneedles. One-dimensionally fabricated microneedles were assembled to make two-dimensionally arrayed patches to attain our goal. First, we fabricated strips with one-dimensionally arrayed microneedles through deep X-ray lithography on polymethylmethacrylate or another negative photoresist, SU-8, with sharply reduced exposure time. Second, we assembled microneedle strips to make two-dimensionally arrayed microneedles, which we utilized further for fabrication of molding masters. Finally, we prepared microneedle patches made of polycarbonate by hot embossing with these masters. We then demonstrated the actual delivery of exogenous materials through application on skin via animal experiments, and we found no detectable side effects such as inflammation or allergic reactions at the site of application.

Keywords

Microneedle Transdermal drug delivery Biocompatible Deep X-ray lithography Molding 

References

  1. C.A. Akdis, M. Akdis, A. Trautmann, K. Blaser, Current Opin. Immunol. 12, 641–646 (2000)CrossRefGoogle Scholar
  2. E.W. Becker, W. Ehrfeld, P. Hagmann, Microelectron. Eng. 4, 35–56 (1986)CrossRefGoogle Scholar
  3. J.H. Braybrook, Biocompatiblility: Assessment of medical devices and materials, Wiley, New York, (1997)Google Scholar
  4. M.B. Brown, G.P. Martin, S.A. Jones, F.K. Akomeah, Drug Deliv. 13, 175–187 (2006)CrossRefGoogle Scholar
  5. G. Cevc, Adv. Drug Deliver. Rev. 56, 675–711 (2004)CrossRefGoogle Scholar
  6. M. Cormier, B. Johnson, M. Ameri, K. Nyam, L. Libiran, D.D. Zhang, P. Daddona, J. Control. Release 97, 503–511 (2004)Google Scholar
  7. P.G. Coulie, P. van der Bruggen, Curr. Opin. Immunol. 15, 131–137 (2003)CrossRefGoogle Scholar
  8. C. Cremers, F. Bouamrane, L. Singleton, R. Schenk, Microsyst. Technol. 7, 11–16 (2001)CrossRefGoogle Scholar
  9. S.E. Cross, M.S. Roberts, Curr. Drug Deliv. 1, 81–92 (2004)CrossRefGoogle Scholar
  10. S.P. Davis, B.J. Landis, Z.H. Adams, M.G. Allen, M.R. Prausnitz, J. Biochem. 37, 1155–1163 (2004)Google Scholar
  11. K. Dell, R. Koesters, L. Gissmann, Int. J. Cancer 118, 364–372 (2006)CrossRefGoogle Scholar
  12. A.R. Denet, R. Vanbever, V. Préat, Adv. Drug Deliver. Rev. 56, 659–674 (2004)CrossRefGoogle Scholar
  13. A.G. Doukas, N. Kollias, Adv. Drug Deliver. Rev. 56, 559–579 (2004)CrossRefGoogle Scholar
  14. H.S. Gill, M.R. Prausnitz, J. Control, Release 117, 227–237 (2007)CrossRefGoogle Scholar
  15. M. Han, D.H. Hyun, H.H. Park, S.S. Lee, C.H. Kim, C.G. Kim, J. Micromech. Microeng. 17, 1184–1191 (2007)CrossRefGoogle Scholar
  16. E. Harlow, D. Lane, Antibodies: A laboratory manual, 2nd edn. (Cold Spring Harbor Laboratory, New York, 1988)Google Scholar
  17. S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, J. Pharm. Sci. 87, 922–925 (1998a)CrossRefGoogle Scholar
  18. S. Henry, D.V. McAllister, M.G. Allen, M.R. Prausnitz, in Proc. IEEE Conf. MEMS, pp. 494–498 (1998b)Google Scholar
  19. L. Jian, Y.M. Desta, J. Goettert, M. Bednarzik, B. Loechel, J. Yoonyoung, G. Aigeldinger, V. Singh, G. Ahrens, G. Gruetzner, R. Ruhmann, R. Degen, in Proc. SPIE 4979, 394–401 (2003)Google Scholar
  20. Y.N. Kalia, A. Naik, J. Garrison, R.H. Guy, Adv. Drug. Deliver. Rev. 56, 619–658 (2004)CrossRefGoogle Scholar
  21. K. Kang, M. Kubin, K.D. Cooper, S.R. Lessin, G. Trinchieri, A.H. Rook, J. Immunol. 156, 1402–1407 (1996)Google Scholar
  22. Y.C. Kim, S.S. Lee, J. Micromech. Microeng. 18, 015006–015012 (2008)CrossRefGoogle Scholar
  23. W. Martanto, S.P. Davis, N.R. Holiday, J. Wang, H.S. Gill, M.R. Prausnitz, Pharm. Res. 21, 947–952 (2004)CrossRefGoogle Scholar
  24. D.V. McAllister, M.G. Allen, M.R. Prausnitz, Annu. Rev. Biomed. Eng. 2, 289–313 (2000)CrossRefGoogle Scholar
  25. D.V. McAllister, P.M. Wang, S.P. Davis, J.H. Park, P.J. Canatella, M.G. Allen, M.R. Prausnitz, Pro. Natl. Acad. Sci. USA 100, 13755–13760 (2003)CrossRefGoogle Scholar
  26. S.J. Moon, S.S. Lee, J. Micromech. Microeng. 15, 903–911 (2005)CrossRefGoogle Scholar
  27. S.J. Moon, C.Y. Jin, S.S. Lee, J. Phys.: Conference Series 34, 180–186 (2006)CrossRefGoogle Scholar
  28. J.H. Park, S. Davis, Y.K. Yoon, M.R. Prausnitz, M.G. Allen, in Proc. IEEE Conf. MEMS, pp. 371–374 (2003)Google Scholar
  29. J.H. Park, M.G. Allen, M.R. Prausnitz, J. Control. Release 104, 51–66 (2005)CrossRefGoogle Scholar
  30. L.A. Pinto, J. Edwards, P.E. Castle, C.D. Harro, D.R. Lowy, J.T. Schiller, D. Wallace, W. Kopp, J.W. Adelsberger, M.W. Baseler, J.A. Berzofsky, A. Hildesheim, J. Exp. Med. 188, 327–338 (2003)Google Scholar
  31. S.A. Plotkin, Nat. Med. Suppl. 11, S5–S11 (2005)CrossRefGoogle Scholar
  32. M.R. Prausnitz, S. Mitragotri, R. Langer, Nat. Rev. Drug Discov. 3, 115–124 (2004)CrossRefGoogle Scholar
  33. I. Roitt, J. Brostoff, D. Male, Immunology, 6th edn. (Harcourt, London, 2001)Google Scholar
  34. N. Romani, S. Koide, M. Crowley, M. Witmer-Pack, A.M. Livingstone, C.G. Fathman, K. Inaba, R.M. Steinman, J. Exp. Med. 169, 1169–1178 (1989)CrossRefGoogle Scholar
  35. N. Romani, S. Holzmann, C.H. Tripp, F. Koch, P. Stoitzner, APMIS 111, 725–740 (2003)CrossRefGoogle Scholar
  36. W.R. Runyan, K.E. Bean, Semiconductor integrated circuit processing technology, Addison-Wesley, New York (1990)Google Scholar
  37. S. Sugiyama, S. Khumpuang, G. Kawaguchi, J. Micromech. Microeng. 14, 1399–1404 (2004)CrossRefGoogle Scholar
  38. E. Touitou, Expert Opin. Biol. Th. 2, 723–733 (2002)CrossRefGoogle Scholar
  39. A. Trautmann, F. Heuck, C. Mueller, P. Ruther, O. Paul, in Proc. Transducers, pp. 1420–1423, (2005)Google Scholar
  40. T.L. Whiteside, R.B. Herberman, Curr. Biol. 7, 704–710 (1995)Google Scholar
  41. G. Widera, J. Johnson, L. Kim, L. Libiran, K. Nyam, P.E. Daddona, M. Cornier, Vaccine 24, 1653–1664 (2006)CrossRefGoogle Scholar
  42. A.C. Williams, B.W. Barry, Adv. Drug Deliver. Rev. 56, 603–618 (2004)CrossRefGoogle Scholar
  43. D.L. Woodland, Curr. Opin. Immunol. 15, 430–435 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chun Yan Jin
    • 1
  • Man Hee Han
    • 1
  • Seung S. Lee
    • 1
  • Yo Han Choi
    • 2
  1. 1.Department of Mechanical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  2. 2.BioMEMS team, Electronics and Telecommunications Research InstituteDaejeonRepublic of Korea

Personalised recommendations