Skip to main content

A microperfused incubator for tissue mimetic 3D cultures

Abstract

High density, three-dimensional (3D) cultures present physical similarities to in vivo tissue and are invaluable tools for pre-clinical therapeutic discoveries and development of tissue engineered constructs. Unfortunately, the use of dense cultures is hindered by intra-culture transport limits allowing just a few layer thick cultures for reproducible studies. In order to overcome diffusion limits in intra-culture nutrient and gas availability, a simple scalable microfluidic perfusion platform was developed and validated. A novel perfusion approach maintained laminar flow of nutrients through the culture to meet metabolic need, while removing depleted medium and catabolites. Velocity distributions and 3D flow patterns were measured using microscopic particle image velocimetry. The effectiveness of forced convection laminar perfusion was confirmed by culturing 700 µm thick neural-astrocytic (1:1) constructs at cell density approaching that of the brain (50,000 cells/mm3). At the optimized flow rate of the nutrient medium, the culture viability reached 90% through the full construct thickness at 2 days of perfusion while unperfused controls exhibited widespread cell death. The membrane aerated perfusion platform was integrated within a miniature, imaging accessible enclosure enabling temperature and gas control of the culture environment. Temperature measurements demonstrated fast feedback response to environmental changes resulting in the maintenance of the physiological temperature within 37 ± 0.2°C. Reproducible culturing of tissue equivalents within dynamically controlled environments will provide higher fidelity to in vivo function in an in vitro accessible format for cell-based assays and regenerative medicine.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. N.H. Bass, H.H. Hess, A. Pope, C. Thalheimer, J. Comp. Neurol. 143, 481 (1971). doi:10.1002/cne.901430405

    Article  Google Scholar 

  2. S.N. Bhatia, U.J. Balis, M.L. Yarmush, M. Toner, FASEB J. 13, 1883 (1999)

    Google Scholar 

  3. N.J. Boudreau, P.L. Jones, Biochem. J. 339, 481 (1999). doi:10.1042/0264-6021:3390481

    Article  Google Scholar 

  4. K. Brannvall, K. Bergman, U. Wallenquist, S. Svahn, T. Bowden, J. Hilborn, K. Forsberg-Nilsson, J. Neurosci. Res. 85, 2138 (2007). doi:10.1002/jnr.21358

    Article  Google Scholar 

  5. V. Braitenberg, J. Comput. Neurosci. 10, 71 (2001). doi:10.1023/A:1008920127052

    Article  Google Scholar 

  6. O. Caspi, A. Lesman, Y. Basevitch, A. Gepstein, G. Arbel, I.H. Habib, L. Gepstein, S. Levenberg, Circ. Ress. 100, 263 (2007). doi:10.1161/01.RES.0000257776.05673.ff

    Article  Google Scholar 

  7. C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, D.E. Ingber, Science 276, 1425 (1997). doi:10.1126/science.276.5317.1425

    Article  Google Scholar 

  8. Y. Choi, J. Vukasinovic, A. Glezer, M.G. Allen, Biomed. Microdevices. 10, 437 (2008). doi:10.1007/s10544-007-9153-4

    Article  Google Scholar 

  9. D.K. Cullen, J. Vukasinovic, A. Glezer, M.C. Laplaca, J. Neural. Eng. 4, 159 (2007). doi:10.1088/1741-2560/4/2/015

    Article  Google Scholar 

  10. J.W. Deitmer, Respir. Physiol. 129, 71 (2001). doi:10.1016/S0034-5687(01)00283-3

    Article  Google Scholar 

  11. R.P. Dring, J. Fluid. Eng.-T ASME 104, 15 (1982)

    Article  Google Scholar 

  12. Editorial, Nature 424, 861 (2003) doi: 10.1038/424861b

  13. J. El-Ali, P.K. Sorger, K.F. Jensen, Nature 442, 403 (2006). doi:10.1038/nature05063

    Article  Google Scholar 

  14. M.V. Fournier, K.J. Martin, J. Cell Physiol. 209, 625 (2006). doi:10.1002/jcp.20787

    Article  Google Scholar 

  15. S. Fox, S. Farr-Jones, L. Sopchak, A. Boggs, H.W. Nicely, R. Khoury, M. Biros, J. Biomol. Screen. 11, 864 (2006). doi:10.1177/1087057106292473

    Article  Google Scholar 

  16. P.L. Gabbott, M.G. Stewart, Neuroscience 21, 833 (1987)

    Article  Google Scholar 

  17. K.O. Hicks, F.B. Pruijn, T.W. Secomb, M.P. Hay, R. Hsu, J.M. Brown, W.A. Denny, M.W. Dewhirst, W.R. Wilson, J. Natl. Cancer. Inst. 98, 1118 (2006). doi:10.1093/jnci/djj306

    Article  Google Scholar 

  18. F.P. Incropera, D.P. DeWitt, Fundamentals of heat and mass transfer, 5th edn. (J. Wiley, New York, 2002)

    Google Scholar 

  19. P.A. Kenny, M.J. Bissell, Int. J. Cancer 107, 688 (2003). doi:10.1002/ijc.11491

    Article  Google Scholar 

  20. C.J. Kirkpatrick, R.E. Unger, V. Krump-Konvalinkova, K. Peters, H. Schmidt, G. Kamp, J. Mater. Sci. Mater. Med. 14, 677 (2003)

    Article  Google Scholar 

  21. Y. Kostov, P. Harms, L. Randers-Eichhorn, G. Rao, Biotechnol. Bioeng. 72, 346 (2001). doi:10.1002/1097-0290(20010205)72:3<346::AID-BIT12>3.0.CO;2-X

    Article  Google Scholar 

  22. S.A. Lelievre, V.M. Weaver, J.A. Nickerson, C.A. Larabell, A. Bhaumik, O.W. Petersen, M.J. Bissell, Proc. Natl. Acad. Sci. USA 95, 14711 (1998). doi:10.1073/pnas.95.25.14711

    Article  Google Scholar 

  23. S. Levenberg, J. Rouwkema, M. Macdonald, E.S. Garfein, D.S. Kohane, D.C. Darland, R. Marini, C.A. van Blitterswijk, R.C. Mulligan, P.A. D’Amore, R. Langer, Nat. Biotechnol. 23, 879 (2005). doi:10.1038/nbt1109

    Article  Google Scholar 

  24. H. Liu, S.F. Collins, L.J. Suggs, Biomaterials 27, 6004 (2006). doi:10.1016/j.biomaterials.2006.06.016

    Article  Google Scholar 

  25. P.J. Magistretti, J. Exp. Biol. 209, 2304 (2006). doi:10.1242/jeb.02208

    Article  Google Scholar 

  26. W. Mueller-Klieser, Am. J. Physiol. 273, C1109 (1997)

    Google Scholar 

  27. S.M. Potter, T.B. DeMarse, J. Neurosci. Methods 110, 17 (2001). doi:10.1016/S0165-0270(01)00412-5

    Article  Google Scholar 

  28. J. Rouwkema, N.C. Rivron, C.A. van Blitterswijk, Trends Biotechnol. 26, 434 (2008). doi:10.1016/j.tibtech.2008.04.009

    Article  Google Scholar 

  29. J.G. Santiago, S.T. Wereley, C.D. Meinhart, D.J. Beebe, R.J. Adrian, Exp. Fluids 25, 316 (1998). doi:10.1007/s003480050235

    Article  Google Scholar 

  30. M. Schindler, E.K.A. Nur, I. Ahmed, J. Kamal, H.Y. Liu, N. Amor, A.S. Ponery, D.P. Crockett, T.H. Grafe, H.Y. Chung, T. Weik, E. Jones, S. Meiners, Cell Biochem. Biophys. 45, 215 (2006). doi:10.1385/CBB:45:2:215

    Article  Google Scholar 

  31. K.S. Smalley, M. Lioni, M. Herlyn, In Vitro Cell Dev. Biol. Anim. 42, 242 (2006). doi:10.1290/0604027.1

    Article  Google Scholar 

  32. L. Stoppini, P.A. Buchs, D. Muller, J. Neurosci. Methods 37, 173 (1991)

    Article  Google Scholar 

  33. F. Sultan, V. Braitenberg, J. Hirnforsch. 34, 79 (1993)

    Google Scholar 

  34. M.A. Swartz, M.E. Fleury, Annu. Rev. Biomed. Eng. 9, 229 (2007). doi:10.1146/annurev.bioeng.9.060906.151850

    Article  Google Scholar 

  35. C.H. Thomas, J.H. Collier, C.S. Sfeir, K.E. Healy, Proc. Natl. Acad. Sci. USA 99, 1972 (2002). doi:10.1073/pnas.032668799

    Article  Google Scholar 

  36. M. Tsacopoulos, P.J. Magistretti, J. Neurosci. 16, 877 (1996)

    Google Scholar 

  37. J. Voldman, M.L. Gray, M.A. Schmidt, Annu. Rev. Biomed. Eng. 1, 401 (1999). doi:10.1146/annurev.bioeng.1.1.401

    Article  Google Scholar 

  38. D. Walpita, E. Hay, Nat. Rev. Mol. Cell. Biol. 3(2), 137 (2002). doi:10.1038/nrm727

    Article  Google Scholar 

  39. D. Wang, W. Liu, B. Han, R. Xu, Curr. Pharm. Biotechnol. 6, 397 (2005)

    Article  Google Scholar 

  40. V.M. Weaver, O.W. Petersen, F. Wang, C.A. Larabell, P. Briand, C. Damsky, M.J. Bissell, J. Cell Biol. 137, 231 (1997)

    Article  Google Scholar 

  41. R.W. Williams, K. Herrup, Annu. Rev. Neurosci. 11, 423 (1988). doi:10.1146/annurev.ne.11.030188.002231

    Article  Google Scholar 

  42. M.H. Wu, J.P. Urban, Z.F. Cui, Z. Cui, X. Xu, Biotechnol. Prog. 23, 430 (2007). doi:10.1021/bp060024v

    Article  Google Scholar 

  43. C. Yamamoto, H. McIlwain, J. Neurochem. 13, 1333 (1966). doi:10.1111/j.1471-4159.1966.tb04296.x

    Article  Google Scholar 

  44. M.H. Zaman, L.M. Trapani, A.L. Sieminski, D. Mackellar, H. Gong, R.D. Kamm, A. Wells, D.A. Lauffenburger, P. Matsudaira, Proc. Natl. Acad. Sci. U.S.A. 103, 10889 (2006). doi:10.1073/pnas.0604460103

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health Bioengineering Research Partnership (EB00786).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jelena Vukasinovic.

Appendix

Appendix

$$ Q_1 = U \cdot A \cdot \Delta T $$
(1)
$$ U = \left( {{t \mathord{\left/ {\vphantom {t k}} \right. } k} + {1 \mathord{\left/ {\vphantom {1 h}} \right. } h}} \right)^{- 1} $$
(2)
$$ Q_2 = \rho \cdot \dot{V} \cdot \left( {h_o - h_i } \right) $$
(3)
$$ \dot{V}_a = {{\left( {Q_1 + Q_2 } \right)} \mathord{\left/ {\vphantom {{\left( {Q_1 + Q_2 } \right)} {\left[ {\rho_a \cdot c_p \cdot \left( {T_{a,h} - T_{a.,o} } \right)} \right]}}} \right. } {\left[ {\rho_a \cdot c_p \cdot \left( {T_{a,h} - T_{a,o} } \right)} \right]}} $$
(4)
$$ Q_h = \rho_a \cdot \dot{V}_a \cdot c_p \cdot \left( {T_{a,i} - T_{a,h} } \right) $$
(5)
$$ L = {{Q_2 } \mathord{\left/ {\vphantom {{Q_2 } {\left( {\bar{h} \cdot \pi \cdot D \cdot \Delta T_{lm} } \right)}}} \right. } {\left( {\bar{h} \cdot \pi \cdot D \cdot \Delta T_{lm} } \right)}} $$
(6)
$$ \Delta T_{lm} = {{\left( {\Delta T_o - \Delta T_i } \right)} \mathord{\left/ {\vphantom {{\left( {\Delta T_o - \Delta T_i } \right)} {\ln \left( {{{\Delta T_o } \mathord{\left/ {\vphantom {{\Delta T_o } {\Delta T_i }}} \right. } {\Delta T_i }}} \right)}}} \right. } {\ln \left( {{{\Delta T_o } \mathord{\left/ {\vphantom {{\Delta T_o } {\Delta T_i }}} \right. } {\Delta T_i }}} \right)}} $$
(7)
$$ \bar{h} = N_u \cdot {k \mathord{\left/ {\vphantom {k D}} \right. } D} $$
(8)
$$ l = 0.05 \cdot R_{eD} \cdot P_r \cdot D $$
(9)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vukasinovic, J., Cullen, D.K., LaPlaca, M.C. et al. A microperfused incubator for tissue mimetic 3D cultures. Biomed Microdevices 11, 1155–1165 (2009). https://doi.org/10.1007/s10544-009-9332-6

Download citation

Keywords

  • Incubator
  • Bioreactor
  • Perfusion
  • Convection
  • 3D culture
  • Neuron