Biomedical Microdevices

, Volume 11, Issue 4, pp 903–913 | Cite as

A microfluidic cell culture platform for real-time cellular imaging

Article

Abstract

This study reports a new microfluidic cell culture platform for real-time, in vitro microscopic observation and evaluation of cellular functions. Microheaters, a micro temperature sensor, and micropumps are integrated into the system to achieve a self-contained, perfusion-based, cell culture microenvironment. The key feature of the platform includes a unique, ultra-thin, culture chamber with a depth of 180 μm, allowing for real-time, high-resolution cellular imaging by combining bright field and fluorescent optics to visualize nanoparticle-cell/organelle interactions. The cell plating, culturing, harvesting and replenishing processes are performed automatically. The developed platform also enables drug screening and real-time, in situ investigation of the cellular and sub-cellular delivery process of nano vectors. The mitotic activity and the interaction between cells and the nano drug carriers (conjugated quantum dots-epirubicin) are successfully monitored in this device. This developed system could be a promising platform for a wide variety of applications such as high-throughput, cell-based studies and as a diagnostic cellular imaging system.

Keywords

Microfluidics Micro-bioreactors Cell culture Nanoparticle Cellular imaging MEMS 

Nomenclature

Au

gold

CCD

Charge-coupled device

DOF

Depth of field

EMV

Electromagnetic valve

FBS

Fetal bovine serum

HEPES

4-(2-hydroxyethyl)-1-piperazineethanesulfonic Acid

ITO

Indium-tin-oxide

MTT

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium Bromide

OC-2

Oral cancer cell

PDMS

Polydimethylsiloxane

Pt

Platinum

QD

Quantum dots

S-shape

Serpentine-shape

References

  1. P. Lang, K. Yeow, A. Nichols, A. Scheer, Nat. Rev. Drug Discov. 5, 343–356 (2006). doi:10.1038/nrd2008 CrossRefGoogle Scholar
  2. K.C. Partlow, G.M. Lanza, S.A. Wickline, Biomaterials 29, 3367–3375 (2008). doi:10.1016/j.biomaterials.2008.04.030 CrossRefGoogle Scholar
  3. S. Gupta, S.R. Indelicato, V. Jethwa, T. Kawabata, M. Kelley, A.R. Mire-Sluis, S.M. Richards, B. Rup, E. Shores, S.J. Swanson, E. Wakshull, J. Immunol. Methods 321, 1–18 (2007). doi:10.1016/j.jim.2006.12.004 CrossRefGoogle Scholar
  4. J.H.J. Xu, P.V. Henstock, M.C. Dunn, A.R. Smith, J.R. Chabot, D. de Graaf, Cellular imaging predictions of clinical drug-induced liver injury. Toxicol. Sci 105, 97–105 (2008). doi:10.1093/toxsci/kfn109 CrossRefGoogle Scholar
  5. H.M. Earl, L. Hiller, J.A. Dunn, S. Bathers, P. Harvey, A. Stanley, R.J. Grieve, R.K. Agrawal, I.N. Fernando, A.M. Brunt, K. McAdam, S. O’Reilly, D.W. Rea, D. Spooner, C.J. Pool, Brit. J. Cancer 99, 1226–1231 (2008). doi:10.1038/sj.bjc.6604674 CrossRefGoogle Scholar
  6. C.L. Tseng, T.W. Wang, C.C. Dong, S.Y.H. Wu, T.H. Young, M.J. Shieh, P.J. Lou, F.H. Lin, Biomaterials 28, 3996–4005 (2007). doi:10.1016/j.biomaterials.2007.05.006 CrossRefGoogle Scholar
  7. H.K. Patra, S. Banerjee, U. Chaudhuri, P. Lahiri, A.K. Dasgupta, Cell selective response to gold nanoparticles. Nanomedicine Nanotech. Biol. Med. 3, 111–119 (2007). doi:10.1016/j.nano.2007.03.005 Google Scholar
  8. F.K. Keter, S. Kanyanda, S.S.L. Lyantagaye, J. Darkwa, D.J.G. Rees, M. Meyer, Cancer Chemother. Pharmacol 63, 127–138 (2008). doi:10.1007/s00280-008-0721-y Google Scholar
  9. P.C. Wu, C.H. Su, F.Y. Cheng, J.C. Weng, J.H. Chen, T.L. Tsai, C.S. Yeh, W.C. Su, J.R. Hwu, Y. Tzeng, D.B. Shieh, Bioconjug. Chem 19, 1972–1979 (2008a). doi:10.1021/bc800092w CrossRefGoogle Scholar
  10. P.C. Wu, W.S. Wang, Y.T. Huang, H.S. Sheu, Y.W. Lo, T.L. Tsai, D.B. Shieh, C.S. Yeh, Chem. Eur. J. 13, 3878–3885 (2007a). doi:10.1002/chem.200601372 CrossRefGoogle Scholar
  11. M.J. Powers, K. Domansky, M.R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K.E. Wack, D.B. Stolz, R. Kamm, L.G. Griffith, Biotechnol. Bioeng 78, 257–269 (2002). doi:10.1002/bit.10143 CrossRefGoogle Scholar
  12. H. Kaji, M. Nishizawa, T. Matsue, Lab Chip 3, 208–211 (2003). doi:10.1039/b304350a CrossRefGoogle Scholar
  13. A. Sin, K.C. Chin, M.F. Jamil, Y. Kostov, G. Rao, M.L. Shuler, Biotechnol. Prog 20, 338–345 (2004). doi:10.1021/bp034077d CrossRefGoogle Scholar
  14. S. Michael, S. Petronis, A.M. Jørgensen, C.B.V. Christensenc, M. Dufva, Lab Chip 6, 1045–1051 (2006). doi:10.1039/b603379b CrossRefGoogle Scholar
  15. A.M. Taylor, M. Blurton-Jones, S.W. Rhee, D.H. Cribbs, C.W. Cotman, N.L. Jeon, Nat. Methods 2, 599–605 (2005). doi:10.1038/nmeth777 CrossRefGoogle Scholar
  16. D. Beebe, M. Wheeler, H. Zeringue, E. Walters, S. Raty, Microfluidic technology for assisted reproduction. Theriogenology 57, 125–135 (2002). doi:10.1016/S0093-691X(01)00662-8 CrossRefGoogle Scholar
  17. S. Raty, E.M. Walters, J. Davis, H. Zeringue, D.J. Beebe, S.L. Rodriguez-Zax, M.B. Wheeler, Lab Chip 4, 186–190 (2004). doi:10.1039/b316437c CrossRefGoogle Scholar
  18. C.W. Huang, G.B. Lee, J. Micromech, Microeng 17, 1266–1274 (2007). doi:10.1088/0960-1317/17/7/008 CrossRefGoogle Scholar
  19. M.H. Wu, J.P.G. Urban, Z. Cui, Z.F. Cui, Biomed. Microdevices 8, 331–340 (2006). doi:10.1007/s10544-006-9597-y CrossRefGoogle Scholar
  20. M. Sittinger, O. Schultz, G. Keyszer, W.W. Minuth, G.R. Burmester, Int. J. Artif. Organs 20, 57–62 (1997)Google Scholar
  21. M.H. Wu, J.P.G. Urban, Z.F. Cui, Z. Cui, X. Xu, Biotechnol. Prog. 23, 430–434 (2007b). doi:10.1021/bp060024v CrossRefGoogle Scholar
  22. M.H. Wu, S.B. Huang, Z.F. Cui, Z. Cui, G.B. Lee, Sensor. Actuat. Biol. Chem. 129, 231–240 (2008b)CrossRefGoogle Scholar
  23. S.B. Huang, M.H. Wu, Z.F. Cui, Z. Cui, G.B. Lee, J. Micromech. Microeng 18, 045008 (12pp) (2008)Google Scholar
  24. M.H. Wu, S.B. Huang, Z.F. Cui, Z. Cui, G.B. Lee, Biomed. Microdevices 10, 309–319 (2008c). doi:10.1007/s10544-007-9138-3 CrossRefGoogle Scholar
  25. T.M. Hsieh, C.H. Luo, G.B. Lee, C.S. Liao, F.C. Huang, J. Med. Biol. Eng. 26, 43–49 (2006)Google Scholar
  26. T.H. Huang, C.Y. Tsai, S.L. Chen, C.T. Kao, J. Biomed. Mater. Res. 63, 814–821 (2002). doi:10.1002/jbm.10412 CrossRefGoogle Scholar
  27. R. Olinsji, P. Jaruga, M. Foksinski, K. Bialkowski, J. Tujakowski, Mol. Pharmacol. 52, 882–885 (1997)Google Scholar
  28. X.Y. Wu, H.J. Liu, J.Q. Liu, K.N. Haley, J.A. Treadway, J.P. Larson, N.F. Ge, F. Peale, M.P. Bruchez, Nat. Biotechnol. 21, 41–46 (2003). doi:10.1038/nbt764 CrossRefGoogle Scholar
  29. J.S. Pieper, T. Hafmans, J.H. Veerkamp, T.H. van Kuppevelt, Biomaterials 21, 581–593 (2000). doi:10.1016/S0142-9612(99)00222-7 CrossRefGoogle Scholar
  30. M. Fraga, M. Lauxl, G.R. DosSantos, B. Zandona, C.D. Giuberti, M.C. de Oliveira, U.D. Matte, H.F. Teixeira, Pharmazie 63, 667–670 (2008)Google Scholar
  31. P.J. Hung, P.J. Lee, P. Sabounchi, N. Aghdam, R. Lin, L.P. Lee, Lab Chip 5, 44–48 (2005). doi:10.1039/b410743h CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan
  2. 2.Institute of Oral Medicine and Department of Stomatology and Institute of Innovation and Advanced StudiesNational Cheng Kung UniversityTainanTaiwan
  3. 3.Institute of Basic Medical SciencesNational Cheng Kung UniversityTainanTaiwan
  4. 4.Medical Electronics and Device Technology CenterIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations