Skip to main content
Log in

A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Micro-electro-mechanical-system (MEMS) based implantable drug delivery devices represent a promising approach to achieving more precise dosing, faster release and better localization of therapeutic compounds than is possible with existing technology. Despite recent advancements, there remain challenges in being able to build systems that enable active control over the dose rate and release time, in a robust, low power but simple to fabricate package. Here we demonstrate an implantable microreservoir device that enables delivery of dose volumes as high as 15 μl using an electrochemically based transport mechanism. This approach allows for a significant reduction in the amount of time required for drug delivery as well as reducing the dependence on the external physiological conditions. We present the overall design, operating principle and construction of the device, and experimental results showing the volume transport rate as a function of the strength of the applied electric field. The concentration profile vs. time, the power consumption, and ejection efficiency are also investigated. To demonstrate the medical utility of the device we also characterize the in-vitro release of vasopressin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • A. Ahmed, C. Bonner, T.A. Desai, Biomed. Microdevices. 3, 89–96 (2001)

    Article  Google Scholar 

  • A. Ahmed, C. Bonner, T.A. Desai, J. Control, Release 81, 291–306 (2002)

    Article  Google Scholar 

  • W.H. Bickell, S.P. Bruttig, G.A. Millnamow, J. Obenar, C.E. Wade, Surgery 110, 529–536 (1991)

    Google Scholar 

  • M.C. Belanger, Y. Marois, J. Biomed. Mater. Res. 58, 467–477 (2001)

    Article  Google Scholar 

  • A.J. Chung, D. Erickson, Lab chip 9, 669–676 (2009)

    Article  Google Scholar 

  • A.J. Chung, D. Kim, D. Erickson, Lab. Chip. 8, 330–338 (2008)

    Article  Google Scholar 

  • R.M.C. Dawson, D.C. Elliott, W.H. Elliott, K.M. Jones, Data for Biochemical Research (Oxford University Press, Oxford, 1986), p. 31

    Google Scholar 

  • M.R. Dokmeci, J.A. von Arx, K. Najafi, Proc. Solid-State Sens. Act., Transducers 1, 283–286 (1997)

    Article  Google Scholar 

  • E.J. Fitzsimons, J. Sendroy, J. Biol. Chem. 236, 1595–1601 (1961)

    Google Scholar 

  • R.P. Frankenthal, D.J. Siconolfi, J. Electrochem. Soc. 129, 1192–1196 (1982)

    Article  Google Scholar 

  • A.C.R. Grayson, M.J. Cima, R. Langer, J. Biomed, Mater. Res. A 69A, 502–512 (2004a)

    Article  Google Scholar 

  • A.C.R. Grayson, M.J. Cima, R. Langer, Biomaterials 26, 2137–2145 (2005)

    Article  Google Scholar 

  • A.C.R. Grayson, R.S. Shawgo, A.M. Johnson, N.T. Flynn, Y.W. Li, M.J. Cima, R. Langer, Proc. IEEE 92, 6–21 (2004b)

    Article  Google Scholar 

  • S. Guo, T. Nakamura, T. Fukuda, K. Oguro, Proc. IEEE ICRA, 266-271 (1997)

  • J.W. Judy, Smart Mat. Struct. 10, 1115–1134 (2001)

    Article  Google Scholar 

  • A.C. Krismer, V. Wenzel, W.G. Voelckel, P. Innerhofer, K.H. Stadlbauer, T. Haas, M. Pavlic, H.J. Sparr, K.H. Lindner, A. Koenigsrainer, Anaesthesist 54, 220–224 (2005)

    Article  Google Scholar 

  • D.A. LaVan, T. McGuire, R. Langer, Nat. Biotech. 21, 1184–1191 (2003)

    Article  Google Scholar 

  • Y.W. Li, H.L.H. Duc, B. Tyler, T. Williams, M. Tupper, R. Langer, H. Brem, M.J. Cima, J. Control, Release 106, 138–145 (2005)

    Article  Google Scholar 

  • H.G. Lienhart, K.H. Lindner, V. Wenzel, Curr. Opin. Crit. Care 14, 247–253 (2008)

    Article  Google Scholar 

  • K.H. Lindner, A.W. Prengel, E.G. Pfenninger, I.M. Lindner, H.U. Strohmenger, M. Georgieff, K.G. Lurie, Circulation 91, 215–221 (1995)

    Google Scholar 

  • M.B. Malay, J.L. Ashton, K. Dahl, S.A. Burchell, R.C. Ashton, R.R. Sciacca, J.A. Oliver, D.W. Landry, Critical Care Medicine 32, 1327–1331 (2004)

    Article  Google Scholar 

  • J.M. Maloney, S.A. Uhland, B.F. Polito, N.F. Sheppard, C.M. Pelta, J.T. Santini, J. Control, Release 109, 244–255 (2005)

    Article  Google Scholar 

  • G. Milles, C.J. Kouchk, H.G. Zacheis, Surgery 60, 434–442 (1966)

    Google Scholar 

  • D. Morales, J. Madigan, S. Cullinane, J. Chen, M. Heath, M. Oz, J.A. Oliver, D.W. Landry, Circulation 100, 226–229 (1999)

    Google Scholar 

  • A.B. Peitzman, B.G. Harbrecht, A.O. Udekwu, T.R. Billiar, K. Edward, R.L. Simmons, Curr. Probl. Surg. 32, 925–1002 (1995)

    Article  Google Scholar 

  • J.H. Prescott, S. Lipka, S. Baldwin, N.F. Sheppard, J.M. Maloney, J. Coppeta, B. Yomto, M.A. Staples, J.T. Santini, Nat. Biotech. 24, 437–438 (2006)

    Article  Google Scholar 

  • B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, Biomaterials science: An Introduction to Materials in Medicine (Academic, San Diego, 2004), pp. 296–304

    Google Scholar 

  • R.R. Richardson, J.A. Miller, W.M. Reichert, Biomaterials 14, 627–635 (1993)

    Article  Google Scholar 

  • I. Roberts, P. Evans, F. Bunn, I. Kwan, E. Crowhurst, Lancet 357, 385–387 (2001)

    Article  Google Scholar 

  • J.T. Santini, M.J. Cima, R. Langer, Nature 397, 335–338 (1999)

    Article  Google Scholar 

  • W.K. Schomburg, J. Vollmer, B. Bustgens, J. Fahrenberg, H. Hein, W. Menz, J. Micromech, Microeng. 4, 186–191 (1994)

    Article  Google Scholar 

  • G.W. Shaftan, C.J. Chiu, C. Dennis, C.S. Grosz, J. Cardiovasc, Surg. 5, 251–256 (1964)

    Google Scholar 

  • Y.S. Shin, K. Cho, S.H. Lim, S. Chung, S.J. Park, C. Chung, D.C. Han, J.K. Chang, J. Micromech, Microeng. 13, 768–774 (2003)

    Article  Google Scholar 

  • S.A. Stern, S.C. Dronen, P. Birrer, X. Wang, Ann. Emerg. Med. 22, 155–163 (1993)

    Article  Google Scholar 

  • W.G. Voelckel, K.G. Lurie, K.H. Lindner, T. Zielinski, S. McKnite, A.C. Krismer, V. Wenzel, Anesth. Analg. 91, 627–634 (2000)

    Article  Google Scholar 

  • G. Voskerician, M.S. Shive, R.S. Shawgo, H. von Recum, J.M. Anderson, M.J. Cima, R. Langer, Biomaterials 24, 1959–1967 (2003)

    Article  Google Scholar 

  • J.H. Yoo, C. Park, D.H. Hahm, H.J. Lee, H.M. Park, J. Vet, Medical Science 69, 755–758 (2007)

    Google Scholar 

  • J.D. Zahn, A. Deshmukh, A.P. Pisano, D. Liepmann, Biomed. Microdevices 6, 183–190 (2004)

    Article  Google Scholar 

  • R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter, Sensor Actuat A-Phys. 50, 81–86 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Defense Advanced Research Project Agency, Microsystems Technology Office, Hybrid Insect MEMS (HI-MEMS) program, through the Boyce Thompson Institute for Plant Research. Distribution unlimited. Fundamental research exempt from prepublication controls. The authors would like to thank Donn Kim and Bernardo Cordovez for helpful discussions and technical assistances. The facilities used for this research include Nanoscale Science & Technology Facility (CNF) and Nanobiotechnology Center (NBTC) at Cornell University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Erickson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary movie 1 Electrochemical transport of 15 μl of vasopressin directly into air for the case of an applied potential of 12 V (MPG 3620 kb)

Supplementary movie 2 Electrochemical transport of 15 μl of vasopressin into PBS buffer for the case of an applied potential of 12 V (MPG 3934 kb)

Supplementary Fig. S1

Vasopressin spectrum by MALDI-TOF/TOF mass spectroscopy (A) Intensity profile for control experiment (B) The main vasopressin peak (~1.085 kD) remains after applying 12 V for 5 min (DOC 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, A.J., Huh, Y.S. & Erickson, D. A robust, electrochemically driven microwell drug delivery system for controlled vasopressin release. Biomed Microdevices 11, 861–867 (2009). https://doi.org/10.1007/s10544-009-9303-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-009-9303-y

Keywords

Navigation