Biomedical Microdevices

, Volume 11, Issue 4, pp 843–850 | Cite as

Fabrication of orderly nanostructured PLGA scaffolds using anodic aluminum oxide templates

  • Gou-Jen Wang
  • Yan-Cheng Lin
  • Ching-Wen Li
  • Cheng-Chih Hsueh
  • Shan-hui Hsu
  • Huey-Shan Hung
Article

Abstract

In this research, two simple fabrication methods to fabricate orderly nanostructured PLGA scaffolds using anodic aluminum oxide (AAO) template were conducted. In the vacuum air-extraction approach, the PLGA solution was cast on an AAO template first. The vacuum air-extraction process was then applied to suck the semi-congealed PLGA into the nanopores of the AAO template to form a bamboo sprouts array of PLGA. The surface roughness of the nanostructured scaffolds, ranging from 20 nm to 76 nm, can be controlled by the sucking time of the vacuum air-extraction process. In the replica molding approach, the PLGA solution was cast on the orderly scraggy barrier-layer surface of an AAO membrane to fabricate a PLGA scaffold of concave nanostructure. Cell culture experiments using the bovine endothelial cells (BEC) demonstrated that the nanostructured PLGA membrane can increase the cell growing rate, especially for the bamboo sprouts array scaffolds with smaller surface roughness.

Keywords

Orderly nanostructured PLGA scaffold AAO template Vacuum air-extraction Replica molding Bovine endothelial cells 

References

  1. J. Anderson, M. Shive, Adv. Drug Deliv. Rev. 28(1), 5–24 (1997). doi:10.1016/S0169-409X(97)00048-3 CrossRefGoogle Scholar
  2. M.J. Dalby, D. Giannaras, M.O. Riehle, N. Gadegaard, S. Affrossman, A.S.G. Curtis, Biomaterials 25, 77–83 (2004). doi:10.1016/S0142-9612(03)00475-7 CrossRefGoogle Scholar
  3. E.J. Frazza, E.E. Schmitt, J. Biomed. Mater. Res. 5, 43–58 (1971). doi:10.1002/jbm.820050207 CrossRefGoogle Scholar
  4. A. Goepferich, Biomaterials 17, 103–114 (1996). doi:10.1016/0142-9612(96)85755-3 CrossRefGoogle Scholar
  5. A.L. Luis, J.M. Rodrigues, S. Amado, A.P. Veloso, P.A. Armada-Da-Silva, S. Raimondo, F. Fregnan, A.J. Ferreira, M.A. Lopes, J.D. Santos, S. Geuna, A.S. Varejao, A.C. Mauricio, Microsurgery 27, 125–137 (2007). doi:10.1002/micr.20317 CrossRefGoogle Scholar
  6. D.C. Miller, K.M. Haberstroh, T.J. Webster, J. Biomed. Mater. Res. 74A, 678–684 (2006)Google Scholar
  7. B.M. Min, Y. You, J.M. Kim, S.J. Lee, W.H. Park, Carbohydr. Polym. 57, 285–292 (2004). doi:10.1016/j.carbpol.2004.05.007 CrossRefGoogle Scholar
  8. G. Mittal, D.K. Sahana, V. Bhardwaj, M.N. Kumar, J. Control. Release 119(1), 77–85 (2007). doi:10.1016/j.jconrel.2007.01.016 CrossRefGoogle Scholar
  9. G.E. Park, K. Park, T.J. Webster, Biomaterials 26(16), 3075–3082 (2005). doi:10.1016/j.biomaterials.2004.08.005 CrossRefGoogle Scholar
  10. W.H. Ryu, M. Vyakarnam, R.S. Gerco, F.B. Prinz, R.J. Fasching, Biomed. Microdevices 9(6), 845–853 (2007). doi:10.1007/s10544-007-9097-8 CrossRefGoogle Scholar
  11. J.K. Savaiano, T.J. Webster, Biomaterials 25((7), 1205–1213 (2004). doi:10.1016/j.biomaterials.2003.08.012 CrossRefGoogle Scholar
  12. K. Sonaje, J.L. Italia, G. Sharma, V. Bhardwaj, K. Tikoo, M.N. Kumar, Pharm. Res. 24(5), 899–908 (2007). doi:10.1007/s11095-006-9207-y CrossRefGoogle Scholar
  13. G.J. Wang, C.C. Hsueh, S.H. Hsu, H.S. Hung, J. Micromech. Microeng 17, 2000–2005 (2007). doi:10.1088/0960-1317/17/10/011 CrossRefGoogle Scholar
  14. T.J. Webster, Z. Tong, J. Liu, M.K. Banks, Nanotechnology 16, S449–S457 (2005). doi:10.1088/0957-4484/16/7/021 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Gou-Jen Wang
    • 1
    • 2
  • Yan-Cheng Lin
    • 1
  • Ching-Wen Li
    • 1
    • 2
  • Cheng-Chih Hsueh
    • 1
  • Shan-hui Hsu
    • 2
    • 3
  • Huey-Shan Hung
    • 3
  1. 1.Department of Mechanical EngineeringNational Chung-Hsing UniversityTaichungTaiwan
  2. 2.Institute of Biomedical EngineeringNational Chung-Hsing UniversityTaichungTaiwan
  3. 3.Department of Chemical EngineeringNational Chung-Hsing UniversityTaichungTaiwan

Personalised recommendations