Biomedical Microdevices

, Volume 11, Issue 4, pp 713–721 | Cite as

Fabrication of complex three-dimensional tissue architectures using a magnetic force-based cell patterning technique

  • Hirokazu Akiyama
  • Akira Ito
  • Yoshinori Kawabe
  • Masamichi Kamihira


We describe the fabrication of three-dimensional tissue constructs using a magnetic force-based tissue engineering technique, in which cellular organization is controlled by magnetic force. Target cells were labeled with magnetite cationic liposomes (MCLs) so that the MCL-labeled cells could be manipulated by applying a magnetic field. Line patterning of human umbilical vein endothelial cells (HUVECs) labeled with MCLs was successfully created on monolayer cells or skin tissues using a magnetic concentrator device. Multilayered cell sheets were also inducible on a culture surface by accumulating MCL-labeled cells under a uniform magnetic force. Based on these results, we attempted to construct a complex multilayered myoblast C2C12 cell sheet. Here, patterned HUVECs were embedded by alternating the processes of magnetic accumulation of C2C12 cells for cell layer formation and magnetic patterning of HUVECs on the cell layers. This technique may be applicable for the fabrication of complex tissue architectures required in tissue engineering.


Cell patterning Three-dimensional tissue construct Magnetite nanoparticles Magnetic force Tissue engineering 


  1. A. Brock, E. Chang, C.C. Ho, P. LeDuc, X. Jiang, G.M. Whitesides, D.E. Ingber, Langmuir 19, 1611 (2003) doi:10.1021/la026394k CrossRefGoogle Scholar
  2. J. Dobson, Nat. Nanotechnol. 3, 139 (2008) doi:10.1038/nnano.2008.39 CrossRefGoogle Scholar
  3. C.K. Hashi, Y. Zhu, G.Y. Yang, W.L. Young, B.S. Hsiao, K. Wang, B. Chu, S. Li, Proc. Natl. Acad. Sci. U S A 104, 11915 (2007) doi:10.1073/pnas.0704581104 CrossRefGoogle Scholar
  4. Y. Hu, S.R. Winn, I. Krajbich, J.O. Hollinger, J. Biomed. Mater. Res. A 64, 583 (2003) doi:10.1002/jbm.a.10438 CrossRefGoogle Scholar
  5. E.E. Hui, S.N. Bhatia, Proc. Natl. Acad. Sci. U S A 104, 5722 (2007) doi:10.1073/pnas.0608660104 CrossRefGoogle Scholar
  6. K. Ino, A. Ito, H. Honda, Biotechnol. Bioeng. 97, 1309 (2007a) doi:10.1002/bit.21322 CrossRefGoogle Scholar
  7. K. Ino, A. Ito, H. Kumazawa, H. Kagami, M. Ueda, H. Honda, J. Chem. Eng. of Jpn 40, 51 (2007b) doi:10.1252/jcej.40.51 CrossRefGoogle Scholar
  8. A. Ito, M. Hayashida, H. Honda, K. Hata, H. Kagami, M. Ueda, T. Kobayashi, Tissue Eng. 10, 873 (2004) doi:10.1089/1076327041348446 CrossRefGoogle Scholar
  9. A. Ito, K. Ino, M. Hayashida, T. Kobayashi, H. Matsunuma, H. Kagami, M. Ueda, H. Honda, Tissue Eng. 11, 1553 (2005) doi:10.1089/ten.2005.11.1553 CrossRefGoogle Scholar
  10. A. Ito, H. Jitsunobu, Y. Kawabe, M. Kamihira, J. Biosci. Bioeng. 104, 371 (2007) doi:10.1263/jbb.104.371 CrossRefGoogle Scholar
  11. X. Jiang, Q. Xu, S.K. Dertinger, A.D. Stroock, T.M. Fu, G.M. Whitesides, Anal. Chem. 77, 2338 (2005) doi:10.1021/ac048440m CrossRefGoogle Scholar
  12. A. Khademhosseini, R. Langer, J. Borenstein, J.P. Vacanti, Proc. Natl. Acad. Sci. U S A 103, 2480 (2006) doi:10.1073/pnas.0507681102 CrossRefGoogle Scholar
  13. S.R. Khetani, S.N. Bhatia, Nat. Biotechnol. 26, 120 (2008) doi:10.1038/nbt1361 CrossRefGoogle Scholar
  14. H.S. Koh, T. Yong, C.K. Chan, S. Ramakrishna, Biomaterials 29, 3574 (2008) doi:10.1016/j.biomaterials.2008.05.014 CrossRefGoogle Scholar
  15. N. Koike, D. Fukumura, O. Gralla, P. Au, J.S. Schechner, R.K. Jain, Nature 428, 138 (2004) doi:10.1038/428138a CrossRefGoogle Scholar
  16. S. Levenberg, J. Rouwkema, M. Macdonald, E.S. Garfein, D.S. Kohane, D.C. Darland, R. Marini, C.A. van Blitterswijk, R.C. Mulligan, P.A. D’Amore, R. Langer, Nat. Biotechnol. 23, 879 (2005) doi:10.1038/nbt1109 CrossRefGoogle Scholar
  17. V. Liu Tsang, A.A. Chen, L.M. Cho, K.D. Jadin, R.L. Sah, S. DeLong, J.L. West, S.N. Bhatia, FASEB J. 21, 790 (2007) doi:10.1096/fj.06–7117com CrossRefGoogle Scholar
  18. V. Mironov, V. Kasyanov, R.R. Markwald, Trends Biotechnol. 26, 338 (2008) doi:10.1016/j.tibtech.2008.03.001 CrossRefGoogle Scholar
  19. C.M. Nelson, R.P. Jean, J.L. Tan, W.F. Liu, N.J. Sniadecki, A.A. Spector, C.S. Chen, Proc. Natl. Acad. Sci. U S A 102, 11594 (2005) doi:10.1073/pnas.0502575102 CrossRefGoogle Scholar
  20. K. Ohashi, T. Yokoyama, M. Yamato, H. Kuge, H. Kanehiro, M. Tsutsumi, T. Amanuma, H. Iwata, J. Yang, T. Okano, Y. Nakajima, Nat. Med. 13, 880 (2007) doi:10.1038/nm1576 CrossRefGoogle Scholar
  21. C.S. Owen, N.L. Sykes, J. Immunol. Methods 73, 41 (1984) doi:10.1016/0022–1759(84)90029–2 CrossRefGoogle Scholar
  22. S.A. Riboldi, N. Sadr, L. Pigini, P. Neuenschwander, M. Simonet, P. Mognol, M. Sampaolesi, G. Cossu, S. Mantero, J. Biomed. Mater. Res. A 84, 1094 (2008) doi:10.1002/jbm.a.31534 Google Scholar
  23. M. Shinkai, M. Yanase, H. Honda, T. Wakabayashi, J. Yoshida, T. Kobayashi, Jpn. J. Cancer Res. 87, 1179 (1996)Google Scholar
  24. Y. Tsuda, T. Shimizu, M. Yamato, A. Kikuchi, T. Sasagawa, S. Sekiya, J. Kobayashi, G. Chen, T. Okano, Biomaterials 28, 4939 (2007) doi:10.1016/j.biomaterials.2007.08.002 CrossRefGoogle Scholar
  25. C. Wilhelm, L. Bal, P. Smirnov, I. Galy-Fauroux, O. Clément, F. Gazeau, J. Emmerich, Biomaterials 28, 3797 (2007) doi:10.1016/j.biomaterials.2007.04.047 CrossRefGoogle Scholar
  26. W.C. Wilson Jr., T. Boland, Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 272, 491 (2003) doi:10.1002/ar.a.10057 Google Scholar
  27. T. Xu, C.A. Gregory, P. Molnar, X. Cui, S. Jalota, S.B. Bhaduri, T. Boland, Biomaterials 27, 3580 (2006)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hirokazu Akiyama
    • 1
  • Akira Ito
    • 1
  • Yoshinori Kawabe
    • 1
  • Masamichi Kamihira
    • 1
  1. 1.Department of Chemical Engineering, Faculty of EngineeringKyushu UniversityNishi-kuJapan

Personalised recommendations