Biomedical Microdevices

, Volume 11, Issue 3, pp 609–614 | Cite as

Single particle adsorbing transfer system

  • Daniela Woide
  • Veronika Mayer
  • Thorsten Wachtmeister
  • Norbert Hoehn
  • Albert Zink
  • Udo Koehler
  • Stefan Thalhammer
Article

Abstract

Here we present a novel approach for horizontal transfer of single particles after laser microdissection. The developed technique is a single particle adsorbing system for highly selective and gentle horizontal transfer of microdissected fixed and living material. As mediated via low-pressure technology, the transfer process can be precisely controlled, thus facilitating horizontal particle transfer of any isolated material, e.g. tissue material, single cells or chromosomes, in addition to precise positioning for sample release. This collection method allows one to predefine target positions and enables material transfer without contamination to any planar microchip device. This contamination free transfer is indispensable for novel lab-on-a-chip systems performing nanoscale polymerase chain reaction analyses. Using virtual reaction chamber microdevices, small amounts of microdissected material—as little as one single cell—can be directly transmitted and immediately used for single cell analysis.

Keywords

Laser microdissection Single particle handling Low pressure LV-PCR microchip 

References

  1. D. Di Martino, G. Giuffrè, N. Staiti, A. Simone, P. Todaro, L. Saravo, Forensic Sci. Int 146, 155–157 (2004). doi:10.1016/j.forsciint.2004.09.047 CrossRefGoogle Scholar
  2. J. Kirschner, A. Plaschke-Schluetter, Nat. Methods 4 (2007)Google Scholar
  3. B. Shadrach, M. Commane, C. Hren, I. Warshawsky, J. Mol. Diagn 6(4), 401–405 (2004)Google Scholar
  4. N.L. Simone, R.F. Bonner, J.W. Gillespie, M.R. Emmert-Buck, L.A. Liotta, TIG 14(7), 272–276 (1998)Google Scholar
  5. S. Thalhammer, G. Lahr, A. Clement-Sengewald, W.M. Heckl, R. Burgemeister, K. Schütze, Laser Phys 13(5), 681–692 (2003)Google Scholar
  6. S. Thalhammer, S. Langer, M.R. Speicher, W.M. Heckl, J.B. Geigl, Chromosome Res 12, 337–343 (2004). doi:10.1023/B:CHRO.0000034132.77192.5f CrossRefGoogle Scholar
  7. S. Thalhammer, Z. von Guttenberg, U. Koehler, A. Zink, W.M. Heckl, T. Franke et al., GenomXPress 1/07, 29–31 (2007)Google Scholar
  8. N.J. Van Orsouw, D. Li, J. Vijg, Mol. Cell. Probes 11(2), 95–101 (1997). doi::10.1006/mcpr.1996.0089 CrossRefGoogle Scholar
  9. D. Vashishth, O. Verborgt, G. Divine, M.B. Schaffler, D.P. Fyhrie, Bone 26(4), 375–380 (2000). doi:10.1016/S8756-3282(00)00236-2 CrossRefGoogle Scholar
  10. J. Weimer, M.R. Koehler, U. Wiedemann, P. Attermeyer, A. Jacobsen, D. Karow et al., Chromosome Res 9, 395–402 (2001). doi:10.1023/A:1016735618513 CrossRefGoogle Scholar
  11. D. Woide, V. Mayer, T. Neumaier, T. Wachtmeister, H.G. Paretzke, Z. von Guttenberg, et al, Proceedings of the first international conference on biomedical electronics and devices Vol 2, ISBN: 978-989-8111-17-3: 265–271 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Daniela Woide
    • 1
  • Veronika Mayer
    • 1
  • Thorsten Wachtmeister
    • 1
  • Norbert Hoehn
    • 2
  • Albert Zink
    • 3
  • Udo Koehler
    • 4
  • Stefan Thalhammer
    • 1
  1. 1.Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Institute of Radiation ProtectionNeuherbergGermany
  2. 2.Xyz high precisionDarmstadtGermany
  3. 3.EURAC, Institute for the icemanBolzanoItaly
  4. 4.Medizinisch Genetisches ZentrumMunichGermany

Personalised recommendations