Biomedical Microdevices

, Volume 11, Issue 3, pp 579–583 | Cite as

Hybridization of localized surface plasmon resonance-based Au–Ag nanoparticles

Article

Abstract

The hybrid Au–Ag triangular nanoparticles were proposed for the purpose of biosensing. To construct the nanoparticles, an Au thin film was deposited on top of the Ag nanoparticles supported with glass substrate. The hybrid nanoparticles can prevent oxidation of the pure Ag nanoparticles due to the Au protective layer caped on the Ag nanoparticles. The hybrid nanoparticles were designed using finite-difference and time-domain algorithm. Extinction spectra of the hybrid nanoparticles excited by visible light beam with plane wave were calculated, and the corresponding electric fields at peak position of the extinction spectra were expressed also. It is clear that the hybrid nanoparticles can excite the localized surface plasmon resonance wave which can be used to detect biomolecules. As an application example, we presented relevant detection results by means of using protein A to covalently link surface of the hybrid nanoparticles. Refractive index sensitivity of the hybrid nanoparticles was derived through both computational numerical calculation and experimental detection. Both the calculated and the experimental extinction spectra show that the hybrid Au–Ag nanoparticles are useful for detecting the biomolecules.

Keywords

Hybrid Au–Ag nanoparticles Nano-biosensor LSPR Spectroscopy 

References

  1. A.J. Haes, R.P. Van Duyne, J. Am. Chem. Soc. 124, 10596–10604 (2002). doi:10.1021/ja020393x CrossRefGoogle Scholar
  2. A.J. Haes, R.P. Van Duyne, Laser Focus World 39(5), 153–156 (2003)Google Scholar
  3. A.J. Haes, S. Zou, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. B 108, 109–116 (2004). doi:10.1021/jp0361327 CrossRefGoogle Scholar
  4. C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 105, 5599–5611 (2001). doi:10.1021/jp010657m CrossRefGoogle Scholar
  5. J. Ji, J.A. Schanzle, M.B. Tabacco, Anal. Chem. 76, 1411–1418 (2004). doi:10.1021/ac034914q CrossRefGoogle Scholar
  6. O. Kohls, T. Scheper, Sens. Actuators B Chem. 70, 121–130 (2000). doi:10.1016/S0925-4005(00)00581-5 CrossRefGoogle Scholar
  7. F.S. Ligler, C.R. Taitt, L.C. Shriver-Lake, K.E. Sapsford, Y. Shubin, J. P. Golden. Anal. Bioanal. Chem. 377(3), 469–477 (2003). doi:10.1007/s00216-003-1992-0 CrossRefGoogle Scholar
  8. M.D. Malinsky, K.L. Kelly, G.C. Schatz, R.P. Van Duyne, J. Am. Chem. Soc. 123, 1471–1482 (2001). doi:10.1021/ja003312a CrossRefGoogle Scholar
  9. J.C. Riboh, A.J. Haes, A.D. McFarland, C. Ranjit, R.P. Van Duyne, J. Phys. Chem. B 107, 1772–1780 (2003). doi:10.1021/jp022130v CrossRefGoogle Scholar
  10. S.L. Wiskur, E.V. Anslyn, J. Am. Chem. Soc. 123(41), 10109–10110 (2001). doi:10.1021/ja011800s CrossRefGoogle Scholar
  11. C.R. Yonzon, E. Jeoung, S. Zou, G.C. Schatz, M. Mrksich, R.P. Van Duyne, J. Am. Chem. Soc. 126, 12669–12676 (2004). doi:10.1021/ja047118q CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Photonics Centre, School of Electronic and Electrical EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations