Skip to main content

Advertisement

Log in

Nanotechnology for regenerative medicine

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Future biomaterials must simultaneously enhance tissue regeneration while minimizing immune responses and inhibiting infection. While the field of tissue engineering has promised to develop materials that can promote tissue regeneration for the entire body, such promises have not become reality. However, tissue engineering has experienced great progress due to the recent emergence of nanotechnology. Specifically, it has now been well established that increased tissue regeneration can be achieved on almost any surface by employing novel nano-textured surface features. Numerous studies have reported that nanotechnology accelerates various regenerative therapies, such as those for the bone, vascular, heart, cartilage, bladder and brain tissue. Various nano-structured polymers and metals (alloys) have been investigated for their bio (and cyto) compatibility properties. This review paper discusses several of the latest nanotechnology findings in regenerative medicine (also now called nanomedicine) as well as their relative levels of success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • C.M. Agrawal, A. Pennick, X. Wang, R.C. Schenck, Porous-coated titanium implant impregnated with a biodegradable protein delivery system J. Biomed. Mater. Res. 36(4), 516–521 (1997)

    Article  Google Scholar 

  • C. Allen, D. Maysinger, A. Eisenberg, Nano-engineering block copolymer aggregates for drug delivery Colloids Surf., B Biointerfaces 16(1-4), 3–27 (1999)

    Article  Google Scholar 

  • A. Atala, Tissue engineering of artificial organs J. Endourol. 14(1), 49–57 (2000)

    Article  Google Scholar 

  • A. Atala, J.P. Vacanti, C.A. Peters, J. Mandell, A.B. Retik, M.R. Freeman, Formation of urothelial structures in vivo from dissociated cells attached to biodegradable polymer scaffolds in vitro J Urol 148(2), 658–662 (1992)

    Google Scholar 

  • S. Ayad, R. Boot-handford, M. Humpries, K. Kadler, A. Shuttleworth, The Extracellular Matrix Facts Book (Academic, San Diego, 1994)

    Google Scholar 

  • C.V. Borlongan, S.J.M. Skinner, M. Geaney, A.V. Vasconcellos, R.B. Elliott, D.F. Emerich, Neuroprotection by encapsulated choroid plexus in a rodent model of huntington’s disease Neuroreport 15(16), 2521–2525 (2004)

    Article  Google Scholar 

  • S. Brody, T. Anilkumar, S. Liliensiek, J.A. Last, C.J. Murphy, A. Pandit, Characterizing nanoscale topography of the aortic heart valve basement membrane for tissue engineering heart valve scaffold design Tissue Eng. 12(2), 413–421 (2006)

    Article  Google Scholar 

  • J. Carpenter, D. Khang, T.J. Webster, Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion Nanotechnology 19 (2008) 505103 (8 pp), doi:10.1088/0957-4484/19/50/505103

  • T.M.S. Chang, Therapeutic applications of polymeric artificial cells Nat. Rev. Drug Discov. 4(3), 221–235 (2005)

    Article  Google Scholar 

  • E.J. Chong, T.T. Phan, I.J. Lim, Y.Z. Zhang, B.H. Bay, S. Ramakrishna, C.T. Lim, Evaluation of electrospun pcl/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution Acta Biomaterialia 3(3), 321–330 (2007)

    Article  Google Scholar 

  • S. Choudhary, K.M. Haberstroh, T.J. Webster, Enhanced functions of vascular cells on nanostructured ti for improved stent applications Tissue Eng. 13(7), 1421–1430 (2007)

    Article  Google Scholar 

  • A.L. Chun, J.G. Moralez, H. Fenniri, T.J. Webster, Helical rosette nanotubes: a more effective orthopaedic implant material Nanotechnology 15(4), S234–S239 (2004)

    Article  Google Scholar 

  • A.L. Chun, J.G. Moralez, T.J. Webster, H. Fenniri, Helical rosette nanotubes: a biomimetic coating for orthopedics? Biomaterials 26(35), 7304–7309 (2005)

    Article  Google Scholar 

  • Y.W. Chun, D. Khang, K.M. Haberstroh, K.M.T.J. Webster, The role of polymer nano surface roughness and submicron pores for improving bladder urothelial cell density and inhibiting calcium oxalate stone formation Nanotechnology, in press (2008)

  • T.-W. Chung, Y.-Z. Wang, Y.-Y. Huang, C.-I. Pan, S.-S. Wang, Poly (e-caprolactone) grafted with nano-structured chitosan enhances growth of human dermal fibroblasts Artif. Organs 30(1), 35–41 (2006)

    Article  Google Scholar 

  • G.M. Cruise, O.D. Hegre, F.V. Lamberti, S.R. Hager, R. Hill, D.S. Scharp, J.A. Hubbell, In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poly(ethylene glycol) diacrylate membranes Cell Transplant 8(3), 293–306 (1999)

    Google Scholar 

  • P. de Vos, C.G. van Hoogmoed, J. van Zanten, S. Netter, J.H. Strubbe, H.J. Busscher, Long-term biocompatibility, chemistry, and function of microencapsulated pancreatic islets Biomaterials 24(2), 305–312 (2003)

    Article  Google Scholar 

  • A. Dove, Cell-based therapies go live Nat. Biotechnol. 20(4), 339–343 (2002)

    Article  Google Scholar 

  • W.H. Eaglstein, V. Falanga, Tissue engineering and the development of apligraf(r), a human skin equivalent Clin. Ther. 19(5), 894–905 (1997)

    Article  Google Scholar 

  • K.L. Elias, R.L. Price, T.J. Webster, Enhanced functions of osteoblasts on nanometer diameter carbon fibers Biomaterials 23(15), 3279–3287 (2002)

    Article  Google Scholar 

  • C. Ergun, H.N. Liu, T.J. Webster, E. Olcay, S. Yilmaz, F.C. Sahin, Increased osteoblast adhesion on nanoparticulate calcium phosphates with higher ca/p ratios J. Biomed. Mater. Res. Part A 85A(1), 236–241 (2008)

    Article  Google Scholar 

  • W. He, T. Yong, Z.W. Ma, R. Inai, W.E. Teo, S. Ramakrishna, Biodegradable polymer nanofiber mesh to maintain functions of endothelial cells Tissue Eng. 12(9), 2457–2466 (2006)

    Article  Google Scholar 

  • G. Hortelano, A. AlHendy, F.A. Ofosu, P.L. Chang, Delivery of human factor ix in mice by encapsulated recombinant myoblasts: a novel approach towards allogeneic gene therapy of hemophilia b Blood 87(12), 5095–5103 (1996)

    Google Scholar 

  • I. Organogenesis, Organogenesis debuts educational campaign for sufferers of chronic leg and foot ulcers. Canton, (2008)

  • H.J. Jin, J.S. Chen, V. Karageorgiou, G.H. Altman, D.L. Kaplan, Human bone marrow stromal cell responses on electrospun silk fibroin mats Biomaterials 25(6), 1039–1047 (2004)

    Article  Google Scholar 

  • T. Joki, M. Machluf, A. Atala, J.H. Zhu, N.T. Seyfried, I.F. Dunn, T. Abe, R.S. Carroll, P.M. Black, Continuous release of endostatin from microencapsulated engineered cells for tumor therapy Nat. Biotechnol. 19(1), 35–39 (2001)

    Article  Google Scholar 

  • H. Kambic, R. Kay, J.F. Chen, M. Matsushita, H. Harasaki, S. Zilber, Biodegradable pericardial implants for bladder augmentation: a 2.5-year study in dogs J. Urol. 148(2), 539–543 (1992)

    Google Scholar 

  • S. Kay, A. Thapa, K.M. Haberstroh, T.J. Webster, Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion Tissue Eng. 8(5), 753–761 (2002)

    Article  Google Scholar 

  • D. Khang, M. Sato, R.L. Price, A.E. Ribbe, T.J. Webster, Selective adhesion and mineral deposition by osteoblasts on carbon nanofiber patterns Int. J. Nanomedicine 1(1), 65–72 (2006)

    Article  Google Scholar 

  • D. Khang, S.Y. Kim, P. Liu-Snyder, G.T.R. Palmore, S.M. Durbin, T.J. Webster, Enhanced fibronectin adsorption on carbon nanotube/poly(carbonate) urethane: independent role of surface nano-roughness and associated surface energy Biomaterials 28(32), 4756–4768 (2007)

    Article  Google Scholar 

  • D. Khang, J. Lu, C. Yao, K.M. Haberstroh, T.J. Webster, The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium Biomaterials 29(8), 970–983 (2008)

    Article  Google Scholar 

  • G.S. Korbutt, A.G. Mallett, Z. Ao, M. Flashner, R.V. Rajotte, Improved survival of microencapsulated islets during in vitro culture and enhanced metabolic function following transplantation Diabetologia 47(10), 1810–1818 (2004)

    Article  Google Scholar 

  • R. Langer, Drug delivery and targeting Nature 392(6679), 5–10 (1998)

    Google Scholar 

  • R. Langer, Perspectives: drug delivery—drugs on target Science 293(5527), 58–59 (2001)

    Article  Google Scholar 

  • J. Lu, M.P. Rao, N.C. MacDonald, D. Khang, T.J. Webster, Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features Acta Biomaterialia 4(1), 192–201 (2008)

    Article  Google Scholar 

  • J.A. McCann-Brown, T.J. Webster, K.M. Haberstroh, Vascular cells respond to endothelial cell flow- and pressure-released soluble proteins Chem. Eng. Commun. 194(3), 309–321 (2007)

    Article  Google Scholar 

  • D.C. Miller, A. Thapa, K.M. Haberstroh, T.J. Webster, Endothelial and vascular smooth muscle cell function on poly(lactic-co-glycolic acid) with nano-structured surface features Biomaterials 25(1), 53–61 (2004)

    Article  Google Scholar 

  • D.C. Miller, K.M. Haberstroh, T.J. Webster, Mechanism(s) of increased vascular cell adhesion on nanostructured poly(lactic-co-glycolic acid) films J. Biomed. Mater. Res. Part A 73A(4), 476–484 (2005)

    Article  Google Scholar 

  • D.C. Miller, K.M. Haberstroh, T.J. Webster, PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion J. Biomed. Mater. Res. Part A 81A(3), 678–684 (2007)

    Article  Google Scholar 

  • T.J. Webster (ed.), Nanotechnology for the regeneration of hard and soft tissues World Scientific, Danvers, MA, 2007.

  • M.R. Neidert, R.T. Tranquillo, Tissue-engineered valves with commissural alignment Tissue Eng. 12(4), 891–903 (2006)

    Article  Google Scholar 

  • G. Orive, R. Hernández, A. Gascón, R. Calafiore, T. Chang, P. Vos, Cell encapsulation: promise and progress Nat. Med. 9, 104–109 (2003) doi:10.1038/nm0103-104

    Article  Google Scholar 

  • R. Pareta, M.J. Edirisinghe, A novel method for the preparation of biodegradable microspheres for protein drug delivery J. R. Soc. Interface 3(9), 573–582 (2006)

    Article  Google Scholar 

  • R. Pareta, T. Webster, Encapsulated neural cells in nano-featured polymer scaffolds, MRS, Boston, MA, (2007)

  • G.E. Park, M.A. Pattison, K. Park, T.J. Webster, Accelerated chondrocyte functions on naoh-treated plga scaffolds Biomaterials 26(16), 3075–3082 (2005)

    Article  Google Scholar 

  • M.A. Pattison, S. Wurster, T.J. Webster, K.M. Haberstroh, Three-dimensional, nano-structured plga scaffolds for bladder tissue replacement applications Biomaterials 26(15), 2491–2500 (2005)

    Article  Google Scholar 

  • C. Rinsch, P. Dupraz, B.L. Schneider, N. Deglon, P.H. Maxwell, P.J. Ratcliffe, P. Aebischer, Delivery of erythropoietin by encapsulated myoblasts in a genetic model of severe anemia Kidney Int. 62(4), 1395–1401 (2002)

    Article  Google Scholar 

  • H.D. Samaroo, J. Lu, T.J. Webster, Enhanced endothelial cell density on niti surfaces with sub-micron to nanometer roughness. Int. J. Nanomedicine (2008) (in press)

  • M. Sato, T.J. Webster, Nanobiotechnology: implications for the future of nanotechnology in orthopedic applications Expert. Rev. Med. Devices 1(1), 105–114 (2004)

    Article  Google Scholar 

  • M. Sato, E.B. Slamovich, T.J. Webster, Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings Biomaterials 26(12), 1349–1357 (2005)

    Article  Google Scholar 

  • J.K. Savaiano, T.J. Webster, Altered responses of chondrocytes to nanophase plga/nanophase titania composites Biomaterials 25(7-8), 1205–1213 (2004)

    Article  Google Scholar 

  • N.E. Simpson, S.C. Grant, S.J. Blackband, I. Constantinidis, Nmr properties of alginate microbeads Biomaterials 24(27), 4941–4948 (2003)

    Article  Google Scholar 

  • P. Soonshiong, R.E. Heintz, N. Merideth, Q.X. Yao, Z.W. Yao, T.L. Zheng, M. Murphy, M.K. Moloney, M. Schmehl, M. Harris, R. Mendez, R. Mendez, P.A. Sandford, Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation Lancet 343(8903), 950–951 (1994)

    Article  Google Scholar 

  • M.M. Stevens, J.H. George, Exploring and engineering the cell surface interface Science 310(5751), 1135–1138 (2005)

    Article  Google Scholar 

  • T. Sun, S. Mai, D. Norton, J.W. Haycock, A.J. Ryan, S. Macneil, Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds Tissue Eng. 11(7-8), 1023–1033 (2005)

    Article  Google Scholar 

  • S. Svenson, D.A. Tomalia, Commentary—dendrimers in biomedical applications—reflections on the field Adv. Drug Deliv. Rev. 57(15), 2106–2129 (2005)

    Article  Google Scholar 

  • A. Thapa, D.C. Miller, T.J. Webster, K.M. Haberstroh, Nano-structured polymers enhance bladder smooth muscle cell function Biomaterials 24(17), 2915–2926 (2003)

    Article  Google Scholar 

  • J. Uribarri, H. Carroll, M. Oh, The first kidney stone Ann. Intern. Med. 111(12), 1006–1009 (1989)

    Google Scholar 

  • W. Wang, X.D. Liu, Y.B. Xie, H. Zhang, W.T. Yu, Y. Xiong, W.Y. Xie, X.J. Ma, Microencapsulation using natural polysaccharides for drug delivery and cell implantation J. Mater. Chem. 16(32), 3252–3267 (2006)

    Article  Google Scholar 

  • B.C. Ward, T.J. Webster, The effect of nanotopography on calcium and phosphorus deposition on metallic materials in vitro Biomaterials 27(16), 3064–3074 (2006)

    Article  Google Scholar 

  • T.J. Webster, Nanophase ceramics as improved bone tissue engineering materials Am. Ceram. Soc. Bull. 82(6), 23–28B (2003)

    MathSciNet  Google Scholar 

  • T.J. Webster, R.W. Siegel, R. Bizios, Osteoblast adhesion on nanophase ceramics Biomaterials 20(13), 1221–1227 (1999)

    Article  Google Scholar 

  • T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Enhanced functions of osteoblasts on nanophase ceramics Biomaterials 21(17), 1803–1810 (2000)

    Article  Google Scholar 

  • T.J. Webster, L.S. Schadler, R.W. Siegel, R. Bizios, Mechanisms of enhanced osteoblast adhesion on nanophase alumina involve vitronectin Tissue Eng 7(3), 291–301 (2001)

    Article  Google Scholar 

  • T.J. Webster, M.C. Waid, J.L. McKenzie, R.L. Price, J.U. Ejiofor, Nano-biotechnology: carbon nanofibres as improved neural and orthopaedic implants Nanotechnology 15(1), 48–54 (2004)

    Article  Google Scholar 

  • C. Yao, E.B. Slamovich, T.J. Webster, Enhanced osteoblast functions on anodized titanium with nanotube-like structures J. Biomed. Mater. Res. Part A 85A(1), 157–166 (2008)

    Article  Google Scholar 

  • X. Zong, H. Bien, C.-Y. Chung, L. Yin, D. Fang, B.S. Hsiao, B. Chu, E. Entcheva, Electrospun fine-textured scaffolds for heart tissue constructs Biomaterials 26(26), 5330–5338 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Coulter Foundation for funding some of the above mentioned research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Webster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khang, D., Carpenter, J., Chun, Y.W. et al. Nanotechnology for regenerative medicine. Biomed Microdevices 12, 575–587 (2010). https://doi.org/10.1007/s10544-008-9264-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9264-6

Keywords

Navigation