Biomedical Microdevices

, Volume 11, Issue 2, pp 339–350 | Cite as

Magnetic-bead-based microfluidic system for ribonucleic acid extraction and reverse transcription processes

  • Chien-Ju Liu
  • Kang-Yi Lien
  • Ching-Yi Weng
  • Jyh-Wei Shin
  • Tsuey-Yu Chang
  • Gwo-Bin Lee
Article

Abstract

This paper presents a new integrated microfluidic chip that automatically performs ribonucleic acid (RNA) extraction and reverse transcription (RT) processes. The microfluidic system consists of a microfluidic control module and a magnetic bio-separator. The microfluidic control module can perform pumping and mixing of small amount of fluids and subsequent purification and concentration of RNA samples by incorporating with the magnetic bio-separator consisting of 2-dimension twisted microcoils. Notably, the magnetic bio-separators are developed either to generate the required magnetic field to perform the separation of magnetic beads or to work as a micro-heater to control the temperature field for the following RT process. Experimental results show that the total RNA can be successfully purified and extracted by using magnetic beads and the subsequent RT processing of the RNA can be performed automatically. Total RNA is successfully extracted and purified from T98 cells utilizing the microfluidic system, which is comparable with the conventional methods. The whole automatic procedure of RNA sample extraction only takes 35 min, which is much faster than the conventional method (more than 2 h). As a whole, the developed microfluidic system may provide a powerful platform for rapid RNA extraction and RT processes for further biomedical applications.

Keywords

RNA extraction Reverse transcription Magnetic bead Microfluidics Magnetic separator μ-TAS MEMS 

Nomenclature

ASIC

application specific integrated circuit

cDNA

complementary deoxyribonucleic acid

DEPC

diethyl pyrocarbonate

DNA

deoxyribonucleic acid

DNase I

deoxyribonuclease I

dNTP

deoxyribonucleotide triphosphate

EMV

electromagnetic valve

EtBr

ethidium bromide

FBS

fetal bovine serum

GADPH

glycerol-dehyde-3-phosphate dehydrogenase

MEMS

micro-electro-mechanical-systems

mRNA

messenger ribonucleic acid

PBS

phosphate buffered saline

PCR

polymerase chain reaction

PDMS

polydimethylsiloxane

RNA

ribonucleic acid

RNase

ribonuclease

RNase H

ribonuclease H

RT

reverse transcription

RT-PCR

reverse transcription polymerase chain reaction

rRNA

ribosomal ribonucleic acid

S-shape

serpentine-shape

SEM

scanning electron microscope

tRNA

transfer ribonucleic acid

References

  1. F. Beaulieux, D.M. See, I. LeparcGoffart, M. Aymard, B. Lina, Res. Virol. 148, 11 (1997). doi:10.1016/S0923-2516(97)81906-1 CrossRefGoogle Scholar
  2. I.M. Bird, Methods Mol. Med. 108, 139 (2005)Google Scholar
  3. C.H. Chiou, G.B. Lee, J. Micromech. Microeng. 15, 109 (2005). doi:10.1088/0960-1317/15/1/017 CrossRefGoogle Scholar
  4. J.M. Chirgwin, A.E. Przybyla, R.J. MacDonald, W.J. Rutter, Biochemistry 18, 5294 (1979). doi:10.1021/bi00591a005 CrossRefGoogle Scholar
  5. J.W. Choi, C.H. Ahn, S. Bhansali, H.T. Henderson, Sens. Actuators B Chem. 68, 34 (2000). doi:10.1016/S0925-4005(00)00458-5 CrossRefGoogle Scholar
  6. J.W. Choi, K.W. Oh, J.H. Thomas, W.R. Heineman, H.B. Halsall, J.H. Nevin et al., Lab Chip 2, 27 (2002). doi:10.1039/b107540n CrossRefGoogle Scholar
  7. P. Chomczynski, Biotechniques 15, 532 (1993)Google Scholar
  8. P. Chomczynski, N. Sacchi, Anal. Biochem. 162, 156 (1987). doi:10.1016/0003-2697(87)90021-2 CrossRefGoogle Scholar
  9. P. Chomczynski, N. Sacchi, Nat. Protocols 1, 581 (2006). doi:10.1038/nprot.2006.83 CrossRefGoogle Scholar
  10. M.A.M. Gijs, Microfluid Nanofluid 1, 22 (2004)Google Scholar
  11. B.I. Haukanes, C. Kvam, Biotechnology (N. Y.) 11, 60 (1993). doi:10.1038/nbt0193-60 CrossRefGoogle Scholar
  12. P. Hegde, R. Qi, K. Abernathy, C. Gay, S. Dharap, R. Gaspard et al., Biotechniques 29, 548 (2000)Google Scholar
  13. Y. Huang, E.L. Mather, J.L. Bell, M. Madou, Anal. Bioanal. Chem. 372, 49 (2002). doi:10.1007/s00216-001-1191-9 CrossRefGoogle Scholar
  14. W.C. Hui, L. Yobas, V.D. Samper, C.K. Heng, S. Liw, H.M. Ji, Y. Chen, L. Cong, J. Li, T.M. Lim, Sens. Actuators A-Phys. 133, 335 (2007)CrossRefGoogle Scholar
  15. R. Jost, O. Berkowitz, J. Masle, Biotechniques 43, 206 (2007)CrossRefGoogle Scholar
  16. E.L. Lawson, J.G. Clifton, F.L. Huang, X.S. Li, D.C. Hixson, D. Josic, Electrophoresis 27, 2747 (2006). doi:10.1002/elps.200600059 CrossRefGoogle Scholar
  17. K.Y. Lien, W.C. Lee, H.Y. Lei, G.B. Lee, Biosens. Bioelectron. 22, 1739 (2007a). doi:10.1016/j.bios.2006.08.010 CrossRefGoogle Scholar
  18. K.Y. Lien, J.L. Lin, C.Y. Liu, H.Y. Lei, G.B. Lee, Lab Chip 7, 868 (2007b). doi:10.1039/b700516d CrossRefGoogle Scholar
  19. K.Y. Lien, W.Y. Lin, Y.F. Lee, C.H. Wang, H.Y. Lei, G.B. Lee, J. Microelectromech. Syst. 17(2), 288 (2008). doi:10.1109/JMEMS.2008.916295 CrossRefGoogle Scholar
  20. L.V. Madabusi, G.J. Latham, B.F. Andruss, Methods Enzymol. 411, 1 (2006). doi:10.1016/S0076-6879(06)11001-0 CrossRefGoogle Scholar
  21. D. Melville, F. Paul, S. Roath, IEEE T. Magn. 11, 1701 (1975). doi:10.1109/TMAG.1975.1058970 CrossRefGoogle Scholar
  22. D.S. Millican, I.M. Bird, Methods Mol. Biol. 105, 315 (1998)Google Scholar
  23. P. Muir, F. Nicholson, M. Jhetam, S. Neogi, J.E. Banatvala, J. Clin. Microbiol. 31, 31 (1993)Google Scholar
  24. M. Ogiue-Ikeda, Y. Sato, S. Ueno, IEEE T. Nanobiosci. 2, 262 (2003). doi:10.1109/TNB.2003.820276 CrossRefGoogle Scholar
  25. K.E. Pilcher, P. Gaudet, P. Fey, A.S. Kowal, R.L. Chisholm, Nat. Protocols 2, 1329 (2007). doi:10.1038/nprot.2007.191 CrossRefGoogle Scholar
  26. P. Ponte, S.Y. Ng, J. Engel, P. Gunning, L. Kedes, Nucleic Acids Res. 12, 1687 (1984). doi:10.1093/nar/12.3.1687 CrossRefGoogle Scholar
  27. Q. Ramadan, V. Samper, D. Poenar, C. Yu, J. Magn. Magn. Mater. 281, 150 (2004). doi:10.1016/j.jmmm.2004.04.100 CrossRefGoogle Scholar
  28. S. Roath, A.R. Smith, J.H.P. Watson, J. Magn. Magn. Mater. 85, 285 (1990). doi:10.1016/0304-8853(90)90067-Z CrossRefGoogle Scholar
  29. H. Shi, R. Bressan, Methods Mol. Biol. 323, 345 (2006)Google Scholar
  30. T. Suzuki, P.J. Higgins, D.R. Crawford, Biotechniques 29, 332 (2000)Google Scholar
  31. H.M. Temin, S. Mizutani, Nature 226, 1211 (1970). doi:10.1038/2261211a0 CrossRefGoogle Scholar
  32. T. Vilkner, D. Janasek, A. Manz, Anal. Chem. 76, 3373 (2004). doi:10.1021/ac040063q CrossRefGoogle Scholar
  33. C.H. Wang, G.B. Lee, Biosens. Bioelectron. 21, 419 (2005). doi:10.1016/j.bios.2004.11.004 CrossRefGoogle Scholar
  34. C.H. Wang, G.B. Lee, J. Micromech. Microeng. 16, 341 (2006). doi:10.1088/0960-1317/16/2/019 CrossRefGoogle Scholar
  35. L. Yobas, E.L. Gui, H.M. Ji, J. Li, Y. Chen, W.C. Hui et al., in Proc. of 8th Int. Conf. on Miniaturized Systems in Chemistry and Life Sciences 2004 micro-TAS, 2004, p 7Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chien-Ju Liu
    • 1
  • Kang-Yi Lien
    • 2
  • Ching-Yi Weng
    • 3
  • Jyh-Wei Shin
    • 4
  • Tsuey-Yu Chang
    • 4
  • Gwo-Bin Lee
    • 1
    • 2
    • 5
  1. 1.Department of Engineering ScienceNational Cheng Kung UniversityTainanTaiwan
  2. 2.Institute of Nanotechnology and Microsystems EngineeringNational Cheng Kung UniversityTainanTaiwan
  3. 3.The Institute of Basic Medical SciencesNational Cheng Kung UniversityTainanTaiwan
  4. 4.Department of ParasitologyNational Cheng Kung UniversityTainanTaiwan
  5. 5.Medical Electronics and Device Technology CenterIndustrial Technology Research InstituteHsinchuTaiwan

Personalised recommendations