Biomedical Microdevices

, 11:313 | Cite as

Nanoscale patterning of kinesin motor proteins and its role in guiding microtubule motility

  • Vivek Verma
  • William O. Hancock
  • Jeffrey M. Catchmark


Biomolecular motor proteins have the potential to be used as ‘nano-engines’ for controlled bioseparations and powering nano- and microelectromechanical systems. In order to engineer such systems, biocompatible nanofabrication processes are needed. In this work, we demonstrate an electron beam nanolithography process for patterning kinesin motor proteins. This process was then used to fabricate discontinuous kinesin tracks to study the directionality of microtubule movement under the exclusive influence of surface bound patterned kinesin. Microtubules moved much farther than predicted from a model assuming infinite microtubule stiffness on tracks with discontinuities of 3 μm or less, consistent with a free-end searching mechanism. As the track discontinuities exceeded 3 μm, the measured and predicted propagation distances converged. Observations of partially fixed microtubules suggest that this behavior results from the interaction of the microtubules with the surface and is not governed predominately by the microtubule flexural rigidity.


Electron beam lithography Kinesin patterning Microtubule flexural rigidity 


  1. L.A. Amos, R.A. Cross, Curr. Opin. Struct. Biol. 7, 239 (1997) doi:10.1016/S0959-440X(97)80032-2 CrossRefGoogle Scholar
  2. A.K. Boal, H. Tellez, S.B. Rivera, N.E. Miller, G.D. Bachand, B.C. Bunker, Small 2, 793 (2006) doi:10.1002/smll.200500381 CrossRefGoogle Scholar
  3. T.B. Brown, W.O. Hancock, Nano Lett. 2, 1131 (2002) doi:10.1021/nl025636y CrossRefGoogle Scholar
  4. L. Cassimeris, D. Gard, P.T. Tran, H.P. Erickson, J. Cell Sci. 114, 3025 (2001)Google Scholar
  5. L.-J. Cheng, M.-T. Kao, E. Meyhöfer, L.J. Guo, Small 1, 409 (2005) doi:10.1002/smll.200400109 CrossRefGoogle Scholar
  6. R.K.M. Christie, M.T. Donald, J. Vac. Sci. Technol. A 21, S207 (2003) doi:10.1116/1.1600446 CrossRefGoogle Scholar
  7. D.L. Coy, M. Wagenbach, J. Howard, J. Biol. Chem. 274, 3667 (1999) doi:10.1074/jbc.274.6.3667 CrossRefGoogle Scholar
  8. H.G. Craighead, Science 290, 1532 (2000) doi:10.1126/science.290.5496.1532 CrossRefGoogle Scholar
  9. F. Gittes, B. Mickey, J. Nettleton, J. Howard, J. Cell Biol. 120, 923 (1993) doi:10.1083/jcb.120.4.923 CrossRefGoogle Scholar
  10. W.O. Hancock, J. Howard, J. Cell Biol. 140, 1395 (1998) doi:10.1083/jcb.140.6.1395 CrossRefGoogle Scholar
  11. H. Hess, J. Clemmens, C.M. Matzke, G.D. Bachand, B.C. Bunker, V. Vogel, Appl. Phys., A Mater. Sci. Process. 75, 309 (2002) doi:10.1007/s003390201339 CrossRefGoogle Scholar
  12. Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, T.Q. Uyeda, Biophys. J. 81, 1555 (2001)CrossRefGoogle Scholar
  13. J. Howard, Annu. Rev. Physiol 58, 703 (1996) doi:10.1146/ CrossRefGoogle Scholar
  14. A.J. Hunt, J. Howard, Proc. Natl. Acad. Sci. USA 90, 11653 (1993) doi:10.1073/pnas.90.24.11653 CrossRefGoogle Scholar
  15. A.A. Hyman, J. Cell Sci. Suppl. 14, 125 (1991)MathSciNetGoogle Scholar
  16. B. Ilic, H.G. Craighead, Biomed. Microdevices 2, 317 (2000) doi:10.1023/A:1009911407093 CrossRefGoogle Scholar
  17. J. Kerssemakers, J. Howard, H. Hess, S. Diez, Proc. Natl. Acad. Sci. USA 103, 15812 (2006) doi:10.1073/pnas.0510400103 CrossRefGoogle Scholar
  18. M. Kikumoto, M. Kurachi, V. Tosa, H. Tashiro, Biophys. J. 90, 1687 (2006) doi:10.1529/biophysj.104.055483 CrossRefGoogle Scholar
  19. F.J. Kull, E.P. Sablin, R. Lau, R.J. Fletterick, R.D. Vale, Nature 380, 550 (1996) doi:10.1038/380550a0 CrossRefGoogle Scholar
  20. L. Limberis, J.J. Magda, R.J. Stewart, Nano Lett. 1, 277 (2001) doi:10.1021/nl0155375 CrossRefGoogle Scholar
  21. S.G. Moorjani, L. Jia, T.N. Jackson, W.O. Hancock, Nano Lett. 3, 633 (2003) doi:10.1021/nl034001b CrossRefGoogle Scholar
  22. C. Reuther, L. Hajdo, R. Tucker, A.A. Kasprzak, S. Diez, Nano Lett. 6, 2177 (2006) doi:10.1021/nl060922l CrossRefGoogle Scholar
  23. W.M. Saxton, M.E. Porter, S.A. Cohn, J.M. Scholey, E.C. Raff, J.R. Mcintosh, Proc. Natl. Acad. Sci. USA 85, 1109 (1988) doi:10.1073/pnas.85.4.1109 CrossRefGoogle Scholar
  24. K. Svoboda, C.F. Schmidt, B.J. Schnapp, S.M. Block, Nature 365, 721 (1993) doi:10.1038/365721a0 CrossRefGoogle Scholar
  25. R.D. Vale, R.J. Fletterick, Annu. Rev. Cell Dev. Biol 13, 745 (1997) doi:10.1146/annurev.cellbio.13.1.745 CrossRefGoogle Scholar
  26. V. VanBuren, L. Cassimeris, D.J. Odde, Biophys. J. 89, 2911 (2005) doi:10.1529/biophysj.105.060913 CrossRefGoogle Scholar
  27. V. Verma, W. O. Hancock, J. M. Catchmark, Advanced Packaging, IEEE Transactions on [see also Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on], 28, 584 (2005)Google Scholar
  28. C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib et al., Appl. Surf. Sci. 164, 111 (2000) doi:10.1016/S0169-4332(00)00352-4 CrossRefGoogle Scholar
  29. F.D. Warner, J.R. McIntosh, Cell movement, Volume 2, kinesin, dynein and microtubule dynamics, 431–440. Pages Liss, New York (1999)Google Scholar
  30. R.C. Williams Jr., J.C. Lee, Methods Enzymol Pt B 85, 376 (1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vivek Verma
    • 1
  • William O. Hancock
    • 2
  • Jeffrey M. Catchmark
    • 3
    • 4
  1. 1.Department of Engineering Science and MechanicsPennsylvania State UniversityUniversity ParkUSA
  2. 2.Bioengineering DepartmentPennsylvania State UniversityUniversity ParkUSA
  3. 3.Agricultural and Biological Engineering Department, College of Agricultural SciencesPennsylvania State UniversityUniversity ParkUSA
  4. 4.Center for NanoCellulosics, Pennsylvania Ben Franklin Technology Partners, Center of ExcellenceThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations