Biomedical Microdevices

, 11:17 | Cite as

Ninety-six-well planar lipid bilayer chip for ion channel recording Fabricated by hybrid stereolithography

  • Hiroaki Suzuki
  • Bruno Le Pioufle
  • Shoji TakeuhciEmail author


We present a micro fluidic chip for parallel ion channel recording in a large array of artificial planar lipid bilayer membranes. To realize a composite structure that features an array of recording wells with free-standing microapertures for lipid bilayer reconstitution, the device was fabricated by the hybrid stereolithography technology, in which a Parylene film with pre-formed microapertures was inserted during the rapid stereolithography process. We designed and tested a hybrid chip that has 96 (12×8) addressable recording wells to demonstrate recording of ion channel current in high-throughput manner. Measurement was done by sequentially moving the recording electrode, and, as a result, the channel current of model membrane protein was detected in 44 wells out of 96. We also showed that this hybrid fabrication process was capable of integrating micropatterned electrodes suitable for automated recording. These results support the efficiency of our present architecture of the parallel ion channel recording chip toward realization of the high-throughput screening of ion channel proteins in the artificial lipid bilayer system.


Planar Lipid Bilayer Membrane Ion Channel High-throughput Recording Microfluidic Chip Stereolithography 

Supplementary material

10544_2008_9205_MOESM1_ESM.doc (1.6 mb)
Fig. S1 Raw data of recordings of two sweeps. Upper and lower frames in each address show the result from the 1st and 2nd sweeps, respectively. Empty circle represents the event in which good electrical sealing was achieved, but no gramicidin signal was detected (case A in the main text). × represent the event in which electrical sealing was low (case B). Raw signal data is shown in the cases where the gramicidin signal was detected. (DOC 1.58 MB)


  1. A. Brueggemann, M. George, M. Klau, M. Beckler, J. Steindl, J.C. Behrends et al., Curr. Drug Discov. Technol. 1, 91–96 (2004), doi: 10.2174/1570163043484833 CrossRefGoogle Scholar
  2. J. Denyer, J. Worley, B. Cox, G. Allenby, M. Banks, Drug Discov. Today 3, 323–332 (1998), doi: 10.1016/S1359-6446(98)01199-4 CrossRefGoogle Scholar
  3. Y. Fang, A.G. Frutos, B. Webb, Y. Hong, A. Ferrie, F. Lai, et al. Biotechniques. (Suppl) 62–65 (2002)Google Scholar
  4. N. Fertig, R.H. Blick, J.C. Behrends, Biophys. J. 82, 3056–3062 (2002)CrossRefGoogle Scholar
  5. J.T. Groves, Curr. Opin. Drug Discov. Devel. 5, 606–612 (2002)Google Scholar
  6. J. Hallborn, R. Carlsson. Biotechniques (Suppl), 30–37 (2002)Google Scholar
  7. K. Ikuta, T. Hasegawa, T. Adachi, S. Maruo. Fluid drive chips containing multiple pumps and switching valves for biochemical IC family. Proc. Int. Conf. MEMS, 739–744 (2000).Google Scholar
  8. K. Ikuta, S. Maruo, T. Fujisawa, A. Yamda, Micro concentrator with opto-sense micro reactor for biochemical IC ship family. Proc. Int. Conf. MEMS, 376–381 (1999).Google Scholar
  9. T. Kodadek, Chem. Biol. 8, 105–115 (2001), doi: 10.1016/S1074-5521(00)90067-X CrossRefGoogle Scholar
  10. M. Kreir, C. Farre, M. Beckler, M. George, N. Fertig, Lab Chip. 8, 587–595 (2008), doi: 10.1039/b713982a CrossRefGoogle Scholar
  11. M. Mayer, J.K. Kriebel, M.T. Tosteson, G.M. Whitesides, Biophys. J. 85, 2684–2695 (2003)CrossRefGoogle Scholar
  12. C. Miller. Ed., Ion Channel Reconstitution (Plenum Pub. Corp., New York, 1986).Google Scholar
  13. R. Pantoja, D. Sigg, R. Blunck, F. Bezanilla, J.R. Heath, Biophys. J. 81, 2389–2394 (2001)CrossRefGoogle Scholar
  14. M.C. Peterman, J.M. Ziebarth, O. Braha, H. Bayley, H.A. Fishman, D.M. Bloom, Biomed Microdev. 4, 231–236 (2002)CrossRefGoogle Scholar
  15. B.L. Pioufle, H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Anal Chem 80, 328–332 (2008)CrossRefGoogle Scholar
  16. M.E. Sandison, H. Morgan, J Micromech Microeng 15, S139–S144 (2005)CrossRefGoogle Scholar
  17. M.E. Sandison, M. Zagnoni, H. Morgan, Langmuir 23, 8277–8284 (2007)CrossRefGoogle Scholar
  18. H. Suzuki, K. Tabata, Y. Kato-Yamada, H. Noji, S. Takeuchi, Lab Chip 4, 502–505 (2004)CrossRefGoogle Scholar
  19. H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Langmuir 22, 1937–1942 (2006)CrossRefGoogle Scholar
  20. H. Suzuki, K.V. Tabata, H. Noji, S. Takeuchi, Biosens Bioelectron 22, 1111–1115 (2007)CrossRefGoogle Scholar
  21. H. Suzuki, S. Takeuchi, Anal Bioanal Chem, Online First, (2008)Google Scholar
  22. C. Wood, C. Williams, G.J. Waldron, Drug Discov Today 9, 434–441 (2004)CrossRefGoogle Scholar
  23. J. Xu, X. Wang, B. Ensign, M. Li, L. Wu, A. Guia, J. Xu, Drug Discov Today 6, 1278–1287 (2001)CrossRefGoogle Scholar
  24. M. Zagnoni, M.E. Sandison, P. Marius, A.G. Lee, H. Morgan, Lab Chip 7, 1176–83 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hiroaki Suzuki
    • 1
    • 4
  • Bruno Le Pioufle
    • 1
    • 2
  • Shoji Takeuhci
    • 1
    • 2
    • 3
    Email author
  1. 1.Institute of Industrial ScienceThe University of TokyoMeguro-kuJapan
  2. 2.LIMMS/CNRS IISThe University of TokyoMeguro-kuJapan
  3. 3.JST PRESTOChiyoda-kuJapan
  4. 4.Graduate School of Information Science and TechnologyOsaka UniversitySuitaJapan

Personalised recommendations